This three part post is based on original theoretical research presented in my book, Unraveling the Universe’s Mysteries, 2012, Louis A. Del Monte (available at Amazon http://amzn.to/Zo1TGn)

After consideration, I suggest understanding the nature of time requires we investigate the kinetic energy associated with moving in four dimensions. The kinetic energy refers to an object’s energy due to its movement. For example, you may be able to bounce a rubber ball softly against a window without breaking it. However, if you throw the ball at the window, it may break the glass. When thrown hard at the wall, the ball has more kinetic energy due to its higher velocity. The velocity described in this example relates to the ball’s movement in three-dimensional space (X1, X2, and X3). Even when the ball is at rest in three-dimensional space, it is it still moving in the fourth dimension, X4. This leads to an interesting question. If it is moving in the fourth dimension, X4, what is the kinetic energy associated with that movement?

To calculate the kinetic energy associated with movement in the fourth dimension we will use a vector space called Minkowski space. In addition, we will also use relativistic mechanics, from Einstein’s special theory of relativity and the mathematical discipline of calculus. In Minkowski space, the X4 coordinate is equal to ict, where i = square root of minus one, t is time as measure with clocks and c is the speed of light in a vacuum.

If we use the above methodology, which is derived in Unraveling the Universe’s Mysteries, 2012, appendix 1, the resulting equation is KEX4 = -.3mc2.

Where KEX4is the energy associated with an object’s movement in time, m is rest mass of an object, and c is the speed of light in a vacuum.

For purposes of reference, I have termed this equation, KEX4 = -.3mc2, the “Existence Equation Conjecture.” Please understand I have labeled the equation a conjecture, which in scientific terms means it is an opinion, specifically my opinion. Next, we will examine the features and implications of the equation.

Although, this equation is dimensionally correct (expressible in units of energy), which is a crucial test in physics, the equation is highly unusual from two standpoints. First, the kinetic energy is negative. The kinetic energy is always a positive value for real masses moving in three-dimensional space. However, as discussed previously, it can be negative for virtual particles. Second, the amount of negative kinetic energy suggested by the equation is enormous, approximately equal to a nuclear bomb, but negative in value.

To further our understanding of the nature of time, we will need to understand time dilation. The theory of time dilation has been around for about a century. It results from Einstein’s special theory of relativity (circa 1905), and his general theory of relativity (circa 1916). What is time dilation? It is the difference of elapsed time between two events as measured by different observers, when the observers are moving relative to each other or the events. Time dilation also occurs when the observers are in stronger or weaker gravitational fields, relative to each other.

Here are two examples to illustrate time dilation.

1)   Picture yourself in a spaceship moving away from another observer who is at rest. When you look at your clock, it appears to be running normally. When the observer at rest looks at your clock, it appears to be running slower than his clock at rest. If the speed of your spaceship approaches the speed of light, the difference between the clocks is significantly exaggerated. The clock on the spaceship, from the viewpoint of the observer at rest, appears to have almost stopped.

2)   Let’s explore gravitational time dilation. When Einstein developed his general theory of relativity (circa 1916), he developed the theory of gravitational time dilation. Picture yourself in a spaceship near the sun, and another observer on a spaceship near the earth. To simplify things, assume you are both at rest relative to each other, and that each of you has a telescope capable of seeing the clock on the other’s spaceship. The clock on the spaceship nearer the sun (in a much greater gravitational field) will move slower than the clock on the spaceship near the earth (in a lesser gravitational field). The observer near the sun sees his clock moving normally, but sees the observer’s clock near the earth moving faster. The observer near the earth sees his clock moving normally, but sees the clock on the spaceship near the sun moving slowly.

Sounds like science fiction, but it is not. Time dilation is an experimentally verified fact. We are dealing with science fact, not science fiction. It is independent of the technical aspects of clocks, and not related to the speed of the signals, which is typically the speed of light. Science believes it is a fundamental of reality.

Stay tuned for part 2.