To almost everyone, there is nothing mysterious about light. In fact, the opposite is true. When we are in the dark and mystery abounds, the first thing we do is turn on the lights. So, why is “The Mysterious Nature of Light” the title of this post?

The first thing that makes light mysterious is that it can exhibit both the properties of a wave and a particle. For all of the Nineteenth Century, and for the early part of the Twentieth Century, most scientists considered light “a wave,” and most of the experimental data supported that “theory.” However, classical physics could not explain black-body radiation (the emission of light due to an object’s heat). A light bulb is a perfect example of black-body radiation. The wave theory of light failed to describe the energy (frequency) of light emitted from a black body. The energy of light is directly proportional to its frequency. To understand the concept of frequency, consider the number of ocean waves that reach the shore in a given length of time. The number of ocean waves than reach the shore, divided by the length of time you measure them, is their frequency. If we consider the wave nature of light, the higher the frequency, the higher the energy.

In 1900, Max Planck hypothesized that the energy (frequency) of light emitted by the black body, depended on the temperature of the black body. When the black body was heated to a given temperature, it emitted a “quantum” of light (light with a specific frequency). This was the beginning of Quantum Mechanics. Max Planck had intentionally proposed a quantum theory to deal with black-body radiation. To Planck’s dismay, this implied that light was a particle (the quantum of light later became known as the photon in 1925). Planck rejected the particle theory of light, and dismissed his own theory as a limited approximation that did not represent the reality of light. At the time, most of the scientific community agreed with him.

If not for Albert Einstein, the wave theory of light would have prevailed. In 1905, Einstein used Max Planck’s black-body model to solve a scientific problem known as the photoelectric effect. In 1905, the photoelectric effect was one of the great unsolved mysteries of science. First discovered in 1887 by Heinrich Hertz, the photoelectric effect referred to the phenomena that electrons are emitted from metals and non-metallic solids, as well as liquids or gases, when they absorb energy from light. The mystery was that the energy of the ejected electrons did not depend on the intensity of the light, but on its frequency. If a small amount of low-frequency light shines on a metal, the metal ejects a few low-energy electrons. If an intense beam of low-frequency light shines on the same metal, the metal ejects even more electrons. However, although there are more of them, they possess the same low energy. To get high-energy electrons, we need to shine high-frequency light on the metal. Einstein used Max Planck’s black-body model of energy, and postulated that light, at a given frequency, could solely transfer energy to matter in integer (discrete number) multiples of energy. In other words, light transferred energy to matter in discrete packets of energy. The energy of the packet determines the energy of the electron that the metal emits. This revolutionary suggestion of quantized light solved the photoelectric mystery, and won Einstein the Nobel Prize in 1921. You may be surprised to learn that Albert Einstein won the Nobel Prize for his work on quantizing light—and not on his more famous theory of relativity.

The second property of light that makes it mysterious is its speed in a vacuum. The speed of light in a vacuum sets the speed limit in the universe. Nothing travels faster than light in a vacuum. In addition, this is a constant, independent of the speed of the source emitting the light. This means that the light source can be at rest or moving, and the speed of light will always be the same in a vacuum. This is counterintuitive. If you are in an open-top convertible car speeding down the highway, and your hat flies off, it begins to move at the same speed as the car. It typically will fall behind the car due to wind resistance that slows down its speed. If you are in the same car, and throw a ball ahead of the car, its velocity will be equal to the speed of the car, plus the velocity at which you throw it. For example, if you can throw a ball sixty miles per hour and the car is going sixty miles per hour, the velocity of the ball will be one hundred twenty miles per hour. This is faster than any major league pitcher can throw a fastball. Next, imagine you are in the same car and have a flashlight. Whether the car is speeding down the highway or parked, the speed of light from the flashlight remains constant (if we pretend the car is in a vacuum). The most elegant theory of all time, Einstein’s special theory of relativity, uses this property of light as a fundamental pillar in its formulation.

  • Why does light have a wave-particle duality?
  • Why is the speed of light in a vacuum the upper limit of anything we observe in the universe?
  • Why is the speed of light a constant independent of the movement of the source emitting the light?

No one knows. We learned an enormous amount about light in the last hundred years. We know it is composed of photons (packets of energy) that have no mass, and when emitted instantaneously, they travel at exactly 299,792,458 meters per second—about 186,000 miles per second. This means they do not accelerate to that speed. They instantaneously exist at that speed. We know the speed of light is a constant independent of the velocity of the source that emits the light. Lastly, we know photons can exhibit the properties of a wave and a particle. The one thing we do not know is “why.”

Reference: Unraveling the Universe’s Mysteries, available at Amazon.com