Is a warp drive spaceship feasible? Mexican theoretical physicist Miguel Alcubierre thinks it is.
In 1994, Dr. Alcubierre published a 1994 paper, “The Warp Drive: Hyper-Fast Travel Within General Relativity,” in the science journal Classical and Quantum Gravity.
The Alcubierre drive appears to allow a spaceship to travel faster than light, but it requires the existence of negative mass to make the Alcubierre drive work. In principle, the drive works by contracting the space in front of the spaceship and expanding the space behind the spaceship faster than the speed of light. In this fashion, the spaceship rides like a surfer on a wave. As the space behind the spaceship expands faster than the speed of light, the spaceship appears to move faster than the speed of light. However, it does not. Only the space behind the ship is expanding faster than the speed of light. In this way, Dr. Alcubierre avoids violating the laws of special relativity, namely, that no mass can exceed the speed of light.
There is no law in physics that prohibits space from expanding faster than the speed of light. From this viewpoint, the Alcubierre drive has merit. The Alcubierre drive is a mathematically valid solution to Einstein’s field equations. However, requiring negative mass as part of the mechanism for the Alcubierre drive makes the theory highly speculative and, once again, beyond the reach of today’s science. As a side note, Dr. Alcubierre got this idea by watching Star Trek and its use of the warp drive.
Often today’s science fiction becomes tomorrow’s science fact.
This post is based on my new book, How to Time Travel (2013), Louis A. Del Monte.