Tag Archives: strong AI

A metallic skull with glowing red eyes and wires attached, set against a black background.

Is Strong Artificial Intelligence a New Life-Form? – Part 3/4

Can we expect an artificially intelligent machine to behave ethically? There is a field of research that addresses this question, namely machine ethics. This field focuses on designing artificial moral agents (AMAs), robots, or artificially intelligent computers that behave morally. This thrust is not new. More than sixty years ago, Isaac Asimov considered the issue in his collection of nine science-fiction stories, published as I, Robot in 1950. In this book, at the insistence of his editor, John W. Campbell Jr., Asimov proposed his now famous three laws of robotics.

  1. A robot may not injure a human being or through inaction allow a human being to come to harm.
  2. A robot must obey the orders given to it by human beings, except in cases where such orders would conflict with the first law.
  3. A robot must protect its own existence as long as such protection does not conflict with the first or second law.

Asimov, however, expressed doubts that the three laws would be sufficient to govern the morality of artificially intelligent systems. In fact he spent much of his time testing the boundaries of the three laws to detect where they might break down or create paradoxical or unanticipated behavior. He concluded that no set of laws could anticipate all circumstances. It turns out Asimov was correct.

To understand just how correct he was, let us discuss a 2009 experiment performed by the Laboratory of Intelligent Systems in the Swiss Federal Institute of Technology in Lausanne. The experiment involved robots programmed to cooperate with one another in searching out a beneficial resource and avoiding a poisonous one. Surprisingly the robots learned to lie to one another in an attempt to hoard the beneficial resource (“Evolving Robots Learn to Lie to Each Other,” Popular Science, August 18, 2009). Does this experiment suggest the human emotion (or mind-set) of greed is a learned behavior? If intelligent machines can learn greed, what else can they learn? Wouldn’t self-preservation be even more important to an intelligent machine?

Where would robots learn self-preservation? An obvious answer is on the battlefield. That is one reason some AI researchers question the use of robots in military operations, especially when the robots are programmed with some degree of autonomous functions. If this seems farfetched, consider that a US Navy–funded study recommends that as military robots become more complex, greater attention should be paid to their ability to make autonomous decisions (Joseph L. Flatley, “Navy Report Warns of Robot Uprising, Suggests a Strong Moral Compass,” www.engadget.com). Could we end up with a Terminator scenario (one in which machines attempt to exterminate the human race)? This issue is real, and researchers are addressing it to a limited extent. Some examples include:

  • In 2008 the president of the Association for the Advancement of Artificial Intelligence commissioned a study titled “AAAI Presidential Panel on Long-Term AI Futures.” Its main purpose was to address the aforementioned issue. AAAI’s interim report can be accessed at http://research.microsoft.com/en-us/um/people/horvitz/AAAI_Presidential_Panel_2008-2009.htm.
  • Popular science-fiction author Vernor Vinge suggests in his writings that the scenario of some computers becoming smarter than humans may be somewhat or possibly extremely dangerous for humans (Vernor Vinge, “The Coming Technological Singularity: How to Survive in the Post-Human Era,” Department of Mathematical Sciences, San Diego State University, 1993).
  • In 2009 academics and technical experts held a conference to discuss the hypothetical possibility that intelligent machines could become self-sufficient and able to make their own decisions (John Markoff, “Scientists Worry Machines May Outsmart Man,” The New York Times, July 26, 2009). They noted: 1)Some machines have acquired various forms of semiautonomy, including being able to find power sources and independently choose targets to attack with weapons. 2)Some computer viruses can evade elimination and have achieved “cockroach intelligence.”
  • The Singularity Institute for Artificial Intelligence stresses the need to build “friendly AI” (i.e., AI that is intrinsically friendly and humane). In this regard Ni ck Bostrom, a Swedish philosopher at St. Cross College at the University of Oxford, and Eliezer Yudkowsky, an American blogger, writer, and advocate for friendly artificial intelligence, have argued for decision trees over neural networks and genetic algorithms. They argue that decision trees obey modern social norms of transparency and predictability. Bostrom also published a paper, “Existential Risks,” in the Journal of Evolution and Technology that states artificial intelligence has the capability to bring about human extinction.
  • In 2009 authors Wendell Wallach and Colin Allen addressed the question of machine ethics in Moral Machines: Teaching Robots Right from Wrong (New York: Oxford University Press). In this book they brought greater attention to the controversial issue of which specific learning algorithms to use in machines.

While the above discussion indicates there is an awareness that SAMs may become hostile toward humans, no legislation or regulation has resulted. AI remains an unregulated branch of engineering, and the computer you buy eighteen months from now will be twice as capable as the one you can buy today.

Where does this leave us? We will address the key questions in the next post.

Source: The Artificial Intelligence Revolution (2014), Louis A. Del Monte

A futuristic humanoid robot with a sleek design and expressive face, holding one hand up as if presenting something.

Is Strong Artificial Intelligence a New Life-Form? – Part 1/4

When an intelligent machine fully emulates the human brain in every regard (i.e., it possesses strong AI), should we consider it a new life-form?

The concept of artificial life (“A-life” for short) dates back to ancient myths and stories. Arguably the best known of these is Mary Shelley’s novel Frankenstein. In 1986 American computer scientist Christopher Langton, however, formally established the scientific discipline that studies A-life. The discipline of A-life recognizes three categories of artificial life (i.e., machines that imitate traditional biology by trying to re-create some aspects of biological phenomena).

  • Soft: from software-based simulation
  • Hard: from hardware-based simulations
  • Wet: from biochemistry simulations

For our purposes, I will focus only on the first two, since they apply to artificial intelligence as we commonly discuss it today. The category of “wet,” however, someday also may apply to artificial intelligence—if, for example, science is able to grow biological neural networks in the laboratory. In fact there is an entire scientific field known as synthetic biology, which combines biology and engineering to design and construct biological devices and systems for useful purposes. Synthetic biology currently is not being incorporated into AI simulations and is not likely to play a significant role in AI emulating a human brain. As synthetic biology and AI mature, however, they may eventually form a symbiotic relationship.

No current definition of life considers any A-life simulations to be alive in the traditional sense (i.e., constituting a part of the evolutionary process of any ecosystem). That view of life, however, is beginning to change as artificial intelligence comes closer to emulating a human brain. For example Hungarian-born American mathematician John von Neumann (1903–1957) asserted that “life is a process which can be abstracted away from any particular medium.” In particular this suggests that strong AI (artificial intelligence that completely emulates a human brain) could be considered a life-form, namely A-life.

This is not a new assertion. In the early 1990s, ecologist Thomas S. Ray asserted that his Tierra project (a computer simulation of artificial life) did not simulate life in a computer but synthesized it. This begs the following question: How do we define A-life?

The earliest description of A-life that comes close to a definition emerged from an official conference announcement in 1987 by Christopher Langton that was published subsequently in the 1989 book Artificial Life: The Proceedings of an Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems.

Artificial life is the study of artificial systems that exhibit behavior characteristic of natural living systems. It is the quest to explain life in any of its possible manifestations, without restriction to the particular examples that have evolved on earth. This includes biological and chemical experiments, computer simulations, and purely theoretical endeavors. Processes occurring on molecular, social, and evolutionary scales are subject to investigation. The ultimate goal is to extract the logical form of living systems.

Kurzweil predicts that intelligent machines will have equal legal status with humans by 2099. As stated previously, his batting average regarding these types of predictions is about 94 percent. Therefore it is reasonable to believe that intelligent machines that emulate and exceed human intelligence eventually will be considered a life-form. In this and later chapters, however, I discuss the potential threats this poses to humankind. For example what will this mean in regard to the relationship between humans and intelligent machines? This question relates to the broader issue of the ethics of technology, which is typically divided into two categories.

  1. Roboethics: This category focuses on the moral behavior of humans as they design, construct, use, and treat artificially intelligent beings.
  2. Machine ethics: This category focuses on the moral behavior of artificial moral agents (AMAs).

We will discuss the above categories in the up coming posts, as we continue to address the question: “Is Strong AI a New Life-Form?”

Source: The Artificial Intelligence Revolution (2014), Louis A. Del Monte