Tag Archives: philosophy of time

Close-up of an antique clock face showing the time at 11:55 with Roman numerals and a warm, golden glow.

Is Time Real Or Just a Construct of Our Mind?

Philosophers have debated the nature of time for over 2500 years, and have left us with three principal theories, listed below in no particular order:

1) Presentists Theory of Time—The “presentists” philosophers argue that present objects and experiences are real. The past and future do not exist. This would argue that time is an emerging concept, and exists in our minds.

2) Growing-Universe Theory of Time—The “growing-universe” philosophers argue that the past and present are real, but the future is not. Their reasoning is the future has not occurred. Therefore, they reason the future is indeterminate, and not real.

3) Eternalism Theory of Time—The “eternalism” philosophers believe that there are no significant differences among present, past, and future because the differences are purely subjective. Observers at vastly different distances from an event would observe it differently because the speed of light is finite and constant. The farthest-away observer may be seeing the birth of a star while the closest observer may be seeing the death of the same star. In effect, the closest observer is seeing what will be the future for the farthest-away observer.

Now let us ask what does science have to say about time and start by discussing the “arrow of time.” The flow of time, sometimes referred to as the “arrow of time,” is a source of debate, especially among physicists. Most physicists argue that time can only move in one direction based on “causality” (i.e., the relationship between cause and effect). The causality argument goes something like this: every event in the future is the result of some cause, another event, in the past. This appears to make perfect sense, and it squares with our everyday experience. However, experiments within the last several years appear to argue reverse causality is possible. Reverse causality means the future can and does influence the past. For example, in reverse causality, the outcome of an experiment is determined by something that occurs after the experiment is done. The future is somehow able to reach into the past and affect it. Are you skeptical? Skepticism is healthy, especially in science. Let us discuss this reverse causality experiment.

In 2009, physicist John Howell of the University of Rochester and his colleagues devised an experiment that involved passing a laser beam through a prism. The experiment also involved a mirror that moved in extremely small increments via its attachment to a motor. When the laser beam was turned on, part of the beam passed through the prism, and part of the beam bounced off the mirror. After the beam was reflected by the mirror, the Howell team used “weak measurements” (i.e., measurement where the measured system is weakly affected by the measurement device) to measure the angle of deflection. With these measurements, the team was able to determine how much the mirror had moved. This part of the experiment is normal, and in no way suggests reverse causality. However, the Howell team took it to the next level, and this changed history, literally. Here is what they did. They set up two gates to make the reflected mirror measurements. After passing the beam through the first gate, the experimenters always made a measurement. After passing it through the second gate, the experimenters measured the beam only a portion of the time. If they chose not to make the measurement at the second gate, the amplitude of the deflected angle initially measured at the first gate was extremely small. If they chose to make the measurement at the second gate, the deflected angle initially measured at the first gate was amplified by a factor of 100. Somehow, the future measurement influenced the amplitude of the initial measurement. Your first instinct may be to consider this an experimental fluke, but it is not. Physicists Onur Hosten and Paul Kwiat, University of Illinois at Urbana-Champaign, using a beam of polarized light, repeated the experiment. Their results indicated an even larger amplification factor, in the order of 10,000.

Although the above experimental results are relatively new, the classic double slit experiment implies exactly the same conclusion, namely future measurements can influence past behavior. For those of you not familiar with the double slit experiment, a brief synopsis is provided below.

There are numerous versions of the double-slit experiment. In its classic version, a coherent light source, for example a laser, illuminates a thin plate containing two open parallel slits. The light passing through the slits causes a series of light and dark bands on a screen behind the thin plate. The brightest bands are at the center, and the bands become dimmer the farther they are from the center. The series of light and dark bands on the screen would not occur if light were only a particle. If light consisted of only particles, we would expect to see only two slits of light on the screen, and the two slits of light would replicate the slits in the thin plate. Instead, we see a series of light and dark patterns, with the brightest band of light in the center, and tapering to the dimmest bands of light at either side of the center. This is an interference pattern and suggests that light exhibits the properties of a wave. We know from other experiments, for example the photoelectric effect, that light also exhibits the properties of a particle. Thus, light exhibits both particle- and wavelike properties. This is termed the dual nature of light. This portion of the double-slit experiment simply exhibits the wave nature of light. Perhaps a number of readers have seen this experiment firsthand in a high school science class.

The above double-slit experiment demonstrates only one element of the paradoxical nature of light, the wave properties. The next part of the double-slit experiment continues to puzzle scientists. There are five aspects to the next part.

1. Both individual photons of light and individual atoms have been projected at the slits one at a time. This means that one photon or one atom is projected, like a bullet from a gun, toward the slits. Surely, our judgment would suggest that we would only get two slits of light or atoms at the screen behind the slits. However, we still get an interference pattern, a series of light and dark lines, similar to the interference pattern described above. Two inferences are possible:

a. The individual photon light acted as a wave and went through both slits, interfering with itself to cause an interference pattern.
b. Atoms also exhibit a wave-particle duality, similar to light, and act similarly to the behavior of an individual photon light described (in part a) above.

2. Scientists have placed detectors in close proximity to the screen to observe what is happening, and they find something even stranger occurs. The interference pattern disappears, and only two slits of light or atoms appear on the screen. What causes this? Quantum physicists argue that as soon as we attempt to observe the wavefunction of the photon or atom, it collapses. Please note, in quantum mechanics, the wavefunction describes the propagation of the wave associated with any particle or group of particles. When the wavefunction collapses, the photon acts only as a particle.

3. If the detector (in number 2 immediately above) stays in place but is turned off (i.e., no observation or recording of data occurs), the interference pattern returns and is observed on the screen. We have no way of explaining how the photons or atoms know the detector is off, but somehow they know. This is part of the puzzling aspect of the double-slit experiment. This also appears to support the arguments of quantum physicists, namely, that observing the wavefunction will cause it to collapse.

4. The quantum eraser experiment—Quantum physicists argue the double-slit experiment demonstrates another unusual property of quantum mechanics, namely, an effect termed the quantum eraser experiment. Essentially, it has two parts:

a. Detectors record the path of a photon regarding which slit it goes through. As described above, the act of measuring “which path” destroys the interference pattern.
b. If the “which path” information is erased, the interference pattern returns. It does not matter in which order the “which path” information is erased. It can be erased before or after the detection of the photons.

This appears to support the wavefunction collapse theory, namely, observing the photon causes its wavefunction to collapse and assume a single value.

5. If the detector replaces the screen and only views the atoms or photons after they have passed through the slits, once again, the interference pattern vanishes and we get only two slits of light or atoms. How can we explain this? In 1978, American theoretical physicist John Wheeler (1911–2008) proposed that observing the photon or atom after it passes through the slit would ultimately determine if the photon or atom acts like a wave or particle. If you attempt to observe the photon or atom, or in any way collect data regarding either one’s behavior, the interference pattern vanishes, and you only get two slits of photons or atoms. In 1984, Carroll Alley, Oleg Jakubowicz, and William Wickes proved this experimentally at the University of Maryland. This is the “delayed-choice experiment.” Somehow, in measuring the future state of the photon, the results were able to influence their behavior at the slits. In effect, we are twisting the arrow of time, causing the future to influence the past. Numerous additional experiments confirm this result.

Let us pause here and be perfectly clear. Measuring the future state of the photon after it has gone through the slits causes the interference pattern to vanish. Somehow, a measurement in the future is able to reach back into the past and cause the photons to behave differently. In this case, the measurement of the photon causes its wave nature to vanish (i.e., collapse) even after it has gone through the slit. The photon now acts like a particle, not a wave. This paradox is clear evidence that a future action can reach back and change the past.

To date, no quantum mechanical or other explanation has gained widespread acceptance in the scientific community. We are dealing with a time travel paradox that illustrates reverse causality (i.e., effect precedes cause), where the effect of measuring a photon affects its past behavior. This simple high-school-level experiment continues to baffle modern science. Although quantum physicists explain it as wavefunction collapse, the explanation tends not to satisfy many in the scientific community. Irrefutably, the delayed-choice experiments suggest the arrow of time is reversible and the future can influence the past.

The above experimental results raise questions about the “arrow of time.” It appears that under certain circumstances, the arrow of time can point in either direction, and time can flow in either direction, forward or backward. If that is true, we can argue time has a physical reality. In other words, it is not a construct of our mind. The reality of time implies that actions in the past can influence the future and actions in the future can influence the past. If time were simply a mental construct, it would not be possible for future events to influence the past.

One last point, none of the above negates Einstein’s view of reality consisting of four-dimensional space-time. All aspects of relativity continue to apply. The above article is intended to substantiate that nature of time itself is a physical reality and not a mental or mathematical construct.

science of time & time dilation

The Philosophy of Time and Time Travel – Part 2/2 (Conclusion)

This is taken from Appendix 4 of my new book, How to Time Travel, to be published by early September 2013.

Let us examine the three major philosophical schools on the nature of time and their implications regarding time travel.

1. Presentism theory of time

The presentism theory of time holds that only the present is real. The past is over. Therefore, it is no longer real. The future has yet to occur. Therefore, the future is not real. Presentists argue that our mind remembers a past and anticipates a future, but neither is real. They are mental constructs.

Arguably, the most famous presentist is Augustine of Hippo (a.k.a. St. Augustine), who compared time to a knife edge. The present represents a knife edge cutting between the past and future. Ironically, this means Augustine of Hippo is not real, since he lived and died in the past. Therefore, should we study Augustine of Hippo, who, by his own philosophy, is not real? Of course, I am only being contentious to make a point.

Presentism has a large following, especially among Buddhists. Fyodor Shcherbatskoy (1866–1942), often referred to as the foremost Western authority on Buddhist philosophy, summed up the Buddhist view of presentism with these few words: “Everything past is unreal, everything future is unreal, everything imagined, absent, mental…is unreal…Ultimately real is only the present moment of physical efficiency.” Uncountable millions of Buddhists still ascribe to this view of time and reality.

A cogent philosophical argument can be made for presentism, but presentism is problematic from a scientific viewpoint. When we discussed the special theory of relativity, we learned that the present is a function of the position and speed of the observer. Therefore, what is the present to one observer may be the past to another.

From the standpoint of time travel, presentism renders the question “how to time travel” moot. If we embrace presentism, there is no past or future, and time travel is meaningless. Fortunately, though, other philosophies of time open the door to time travel. Let us examine the next one.

2. Growing universe theory of time

This theory of time is also referred to as “growing block universe” and “the growing block view.” However, regardless of the name, they all hold the same philosophy of time. The past is real, and the present is real. The future is not real. The logic goes something like this: The past is real because it actually happened. We experience it, and we document it. We call it history. The present is real because we experience it. We often share the present with others. The future is not real because it has not occurred.

Why do all the names for this theory of time start with the word “growing”? The concept is that the passage of time continually expands the history of the universe. Actually, this is logical. The history of the world, and the universe, continues to expand with the passage of time. The history section of any library is destined to grow with time.

In this philosophy of time, only time travel to the past makes sense, since for growing-universe philosophers, the past is real. We cannot time travel to the future, since the future has yet to occur. Therefore, it is not real.

As logical as this theory of time may appear, there is scientific evidence that the future is real and can influence the present. We discussed this evidence in the section titled “Twisting the arrow of time” in chapter 1. Now, let us examine the last significant philosophy of time.

3. Eternalism theory of time

The eternalism theory of time holds that the past, present, and future are real. The philosophy of this theory rests on Einstein’s special theory of relativity. Essentially, the special theory of relativity holds that the past, present, and future are functions of the speed and position of an observer.

While Einstein never equated time with the fourth dimension, Minkowski’s geometric interpretation of Einstein’s special theory of relativity gave birth to four-dimensional space, with time as part of the fourth dimension. In Minkowski’s interpretation, often termed “Minkowski space” or “Minkowski spacetime,” the fourth dimension includes time and is on equal footing with the normal three-dimensional space we currently encounter. However, Minkowski’s fourth dimension borders on the strange. In Minkowski spacetime, the fourth dimension, X4, is equal to ict, where i = √-1, an imaginary number, c is the speed of light in a vacuum, and t is time as measured by clocks. The mathematical expression ict is dimensionally correct, meaning that it is a spatial coordinate, not a temporal coordinate, but is essentially impossible to visualize, since it includes an imaginary number. What is an imaginary number? It is a number that when squared (multiplied by itself) gives a negative number. This is not possible to do with real numbers. If you multiply any real number, even a negative real number like minus one, by itself, you always get a positive number. Therefore, it is impossible to solve for the square root of minus one.

Although we can express it mathematically as √-1, it has no solution, and it is termed an imaginary number. Does that mean Minkowski was wrong about the fourth dimension? Actually, it does not. It does say that it is a mathematical construct, and intuitively, for most of us, impossible to visualize. However, the special theory of relativity continues to be taught using Minkowski spacetime, which the bulk of the scientific community considers a valid geometric interpretation. In either its algebraic form, as first presented by Einstein, or its geometric form, as interpreted by Minkowski, the majority of the scientific community considers the special theory of relativity the single most successful theory in science. It has withstood over a century of experimental investigation, and it is widely considered verified.

Because of its scientific underpinnings, the eternalism theory of time is widely accepted in the scientific community. If we adopt the eternalism theory of time, then time travel to the past or future becomes equally valid. In addition, no scientific theory contradicts or prohibits time travel. Said more positively, based on Einstein’s theories of relativity, which lay a theoretical foundation for time dilation (i.e., time travel to the future) and closed timelike curves (i.e., time travel to the past), most of the scientific community would support the scientific possibility of time travel.

science of time & time dilation

The Philosophy of Time and Time Travel – Part 1/2

This is taken from Appendix 4 my new book, How to Time Travel, to be published by early September 2013.

What does philosophy have to do with science? The answer is simple. Your philosophy of time will determine whether you believe time travel is even a scientific possibility. Of the three major philosophical schools on time, only one allows for the possibility of time travel to both the past and future. From this standpoint, it is critical that you know the major philosophies of time and know where you stand on the subject.

Philosophers have been pondering the nature of time for thousands of years. A philosophy of time weaves through almost every ancient culture. For example, the earliest view of the nature of time by a Western philosopher dates back to ancient Egypt and the Egyptian philosopher Ptahhotep (2650–2600 BCE). Indian philosophers and Hindu philosophers also wrote about time dating back to roughly the same period. The ancient Greek philosophers, such as Parmenides, Heraclitus, and Plato, wrote essays about the nature of time roughly around 500 BCE to 350 BCE.

Many early writers questioned the nature of time, the cause of time, and the unidirectional flow of time, often referred to as the “arrow of time.” One of the most interesting aspects when studying the philosophy of time is that some cultures, like the Incas, dating back to about the thirteenth century, considered space and time woven together. Centuries before Einstein published his now-famous special theory of relativity, which scientifically unified space and time (i.e., spacetime), the Incas philosophically unified space and time into a single concept called “pacha.”

There is a question about time that has ancient roots and that continues to trouble modern scientists and many religions, namely: Did time have a beginning? Through the ages, philosophers and scientists have struggled with this question, and no widely accepted answer has emerged. Not surprisingly, the “time had no beginning” camp, which originated with the ancient Greeks, held solid ground for over several millennia. The Greeks were formidable philosophers. However, the emerging world religions, including Judaism, Christianity, and Islam, slowly chipped away at the Greek philosophy of an infinite past. They simply taught that a deity made the world, and this suggests a beginning of time. Religious philosophers backed these teachings. Christian philosophers, such as John Philoponus, Muslim philosophers, such as Al-Kindi, and Jewish philosophers, such as Saadia Gaon, argued mathematically that infinities do not exist in reality. If you accept this premise, logically you are backed into a corner and must concede that time had a beginning. In other words, if infinities do not exist in reality and are merely a mathematical construct, then time cannot have an infinite past. This argument was refined and became known as the “argument from the impossibility of completing an actual infinite by successive addition.” Simply stated, you cannot complete infinity by adding successive events. Since an infinite past would imply the addition of success events, it ruled out an infinite past. Some notable scientists aligned with this thinking, the most famous today being Stephen Hawking, who argued that time began with the big bang. Dr. Hawking believes that events before the big bang have no observable consequence. It is not clear that this proves time had a beginning. Other physicists, such as Lawrence Krauss, author of A Universe from Nothing (2012), and I, author of Unraveling the Universe’s Mysteries (2012), argue events occurred that preceded and caused the big bang, which implies time preceded the big bang. It does not prove, though, that time has an infinite past or a beginning.

Almost all of us believe we understand time. In fact, when first asked a question about the nature of time, most of us will begin to explain it. However, as we attempt to explain it, the complexity of time’s nature emerges. Augustine of Hippo (354 CE–430 CE), known to Christians as St. Augustine, eloquently made this observation: “What then is time? If no one asks me, I know: if I wish to explain it to one that asketh, I know not.” The most difficult thing I encountered regarding the nature of time was trying to explain it to my six-year-old grandchild. That is when Einstein’s famous quote hit home: “If you can’t explain it to a six-year-old, you don’t understand it yourself.”

Fortunately, though, as the sands of time counted millennia after millennia, three major philosophical schools on the nature of time emerged. We will examine them and discuss their implications regarding time travel in our next post.