Tag Archives: nanobots

A mechanical insect with metal legs and two large barrel-shaped eyes resembling gun barrels.

Will the United States Use Nanoweapons to Resolve the North Korean Crisis?

Unless you’re working in the field, you probably never heard about U.S. nanoweapons. This is intentional. The United States, as well as Russia and China, are spending billions of dollars per year developing nanoweapons, but all development is secret. Even after Pravda.ru’s June 6, 2016 headline, “US nano weapon killed Venezuela’s Hugo Chavez, scientists say,” the U.S. offered no response. Earlier this year, May 5, 2017, North Korea claimed the CIA plotted to kill Kim Jong Un using a radioactive nano poison, similar to the nanoweapon Venezuelan scientists claim the U.S. used to assassinate former Venezuelan President Hugo Chavez. All major media covered North Korea’s claim. These accusations are substantial, but are they true? Let’s address this question.

 

Unfortunately, until earlier this year, nanoweapons gleaned little media attention. However, in March 2017 that changed with the publication of my book, Nanoweapons: A Growing Threat to Humanity (2017 Potomac Books), which inspired two articles. On March 9, 2017, American Security Today published “Nanoweapons: A Growing Threat to Humanity – Louis A. Del Monte,” and on March 17, 2017, CNBC published “Mini-nukes and mosquito-like robot weapons being primed for future warfare.” Suddenly, the genie was out of the bottle. The CNBC article became the most popular on their website for two days following its publication and garnered 6.5K shares. Still compared to other classes of military weapons, nanoweapons remain obscure. Factually, most people never even heard the term. If you find this surprising, recall most people never heard of stealth aircraft until their highly publicized use during the first Iraq war in 1990. Today, almost everyone that reads the news knows about stealth aircraft. This may become the case with nanoweapons, but for now, it remains obscure to the public.

 

Given their relative obscurity, we’ll start by defining nanoweapons. A nanoweapon is any military weapon that exploits the power of nanotechnology. This, of course, begs another question: What is nanotechnology? According to the United States National Nanotechnology Initiative’s website, nano.gov, “Nanotechnology is science, engineering, and technology conducted at the nanoscale, which is about 1 to 100 nanometers.” To put this in simple terms, the diameter of a typical human hair equals 100,000 nanometers. This means nanotechnology is invisible to the naked eye or even under an optical microscope.
If the U.S. chooses to use nanoweapons covertly, they most likely will use:

 

  • Toxic nanoparticles – These are toxic particles a nanoscale diameter, which means their surface area to volume ratio is enormous. What makes them extremely effective as a poison is that they are able to cross biological membranes that their bulk counterparts are unable to cross. Therefore, they can be readily absorbed. They are more toxic than their due to the large surface area to volume ratio, which allows them to be extremely chemically reactive.

 

If the U.S. chooses to use nanoweapons in open conflict with North Korea, it will likely be:

 

  • Nanoelectronic Weapon Systems – Nanoelectronics are integrated circuits with features in the nanoscale. Intel is shipping nanoelectronic microprocessors for use in commercial computer applications. Because of their nanoscale features, they are smaller, faster, and use less power to operate. This makes them ideal for military weapon systems, like guided missiles.

 

The U.S. has a formidable nanoweapons arsenal. Even as they use them covertly and in open conflict, it may not be apparent that the technology that underpins the weapons is nanotechnology, thus making them by definition nanoweapons.

 

When will that change? It will change when something big happens. Imagine billions of toxic nanoparticles released on an adversary’s army, causing death and chaos. This would significantly reduce the adversary’s military effectiveness. In all likelihood, it may take weeks or months for the adversary to determine the cause. Imagine millions of nanobots attacking an adversary’s army, again causing death and chaos. In effect, killer insect-like nanobots would be a technological plague.

 

Ironically, the next big thing in military weapons is small. Barely mentioned in the media, nanoweapons are as effective and lethal as their larger more visible counterparts. In time, a nation’s military might will be a measure of its nanoweapons capabilities, as well as it nuclear and more conventional capabilities. In fact, by the second half of this century, nanoweapon capabilities are likely to determine the superpowers.
Close-up of a detailed human skull and crossed bones on a textured surface.

Are Nanoweapons Paving the Road to Human Extinction?

Nanotechnology researchers continue their relentless journey to develop nanobots and they are succeeding. Nanomedicine is using nanobots to cure to cancer. Military nanotechnologies, especially nanobots, will emerge as the defining weapons of the twenty first century.

The United States military already deploys nanoweapons, such as nanotechnology based lasers, toxic nanoparticles, nanoparticle catalysts, and nano electronics. These nanoweapons give the United States significant capabilities in asymmetrical warfare. However, the US military’s  greatest quest is the development of nanobots, tiny robots built with nanotechnology.

What is it about nanobots that make them the ideal weapons? Let us address this question by taking several examples. About a third of all US fighter planes today are drones. Today’s drones are approximately one-third the size of a manned fighter jet, like the F-35. However, a new class of drones is in development, bird and even insect size drones. For example, in 2014, the Army Research Laboratory announced the creation of a “fly drone” weighing only a small fraction of a gram. This drone could conceivable fly into an adversary’s command post and provide surveillance or into the adversary’s dining area to deposit a nano poison. An insect fly drone provides the military with both surveillance and assignation capabilities. This gives a completely new meaning to “fly on the wall.”

As electronic processors shrink into the nanoscale, becoming nanoprocessors, about 1/1000 the diameter of a human hair, conceivably they could provide the fly drone with artificial intelligence. In effect, it could autonomously carry out its programmed mission.

You may wonder, How does all of this threaten human extinction? To address this question, imagine a scenario where the US military releases millions of artificially intelligent fly drones within an adversary’s boarders, programmed to target the populace via commonalities in their DNA. If each fly drone had the capability to assassinate a few people, conceivably they could wipe out an entire nation.

Although this may sound like science fiction, the United States is within a decade of having the capability. The US Army is already testing a fly drone. As for poisons, as little as 100 nano grams of  botulism H will kill a human. That quantity of poison is too small to see or taste, yet lethal and small enough for a fly drone to carry. In my book, Nanoweapons: A Growing Threat To Humanity, I classify this type of weapon as a strategic nanoweapon. This classification parallels strategic nuclear weapons that have the capability to destroy nations.

While artificially intelligent insect drones are already a scary proposition, the next step in their development is even more frightening, namely self-replicating insect drones, or more generically self- replicating nanobots. Given the exponential advance in nano electronics and artificial intelligence, characterized by Moore’s law, it is likely we will see the emergence of self-replicating nanobots in the 2050s.

Self-replicating nanobots are the ultimate invention. In medicine, they will flow through our blood preventing diseases and curing injuries. In military applications, they will have the capability to completely destroy an adversary, from its populace to its structures. This scenario was depicted in the sci-fi movie, The Day the Earth Stood Still.

Strategic nanoweapons, like their nuclear counterparts, pose a threat to humanity. The major issue is control. Will we be able to deploy strategic nanoweapons and maintain control over them? If, for example, we lost control of self-replicating nanobots, we would face a technological plague, one that we currently have no way of stopping.

In a decade, we will see the emergence of nanobots. In medicine, they will cure cancer. In warfare, they may kill millions. In the 2050s, we will see the emergence of self-replicating nanobots. In medicine, they will offer immortality. In warfare, they will pose a threat to humanity.

Detailed sketch of a mechanical rabbit with intricate robotic limbs and wings in a dynamic pose.

The Rise of the Nanobots

Let’s start with a simple definition. Nanobots are nanoscale robots. Once, strictly confined to speculation and science fiction, the military and medical industry is making them a reality.

In the medical industry, specifically the area of nanomedicine, nanobots are being developed and used in human trials to cure a number of diseases, including cancer. For example, on May 15, 2015 Next Big Future reported, “Bachelet (i.e., Dr. Ido Bachelet, manager of Bar-Ilan University’s robot laboratory) has developed a method of producing innovative DNA molecules with characteristics that can be used to ‘program’ them to reach specific locations in the body and carry out pre-programmed operations there in response to stimulation from the body.” In this case, the pre-programming involves detecting cancer cells and delivering an existing cancer drug treatment directly to a cancerous cell, bypassing healthy cells. As of this writing, Dr. Bachelet and Pfizer announced “partnering” to perform human trials, using the DNA nanobots. However, there have been no reports on the human trials to date.

Other medical researchers are taking a similar approach, as reported in Science Translational Medicine, Renier J. Brentjens et. al., 20 Mar 2013. In essence, they remove some of the patient’s T-cells, which are cells produced by the patient’s thymus gland. T-cells work as part of the human immune system. After removing the T-cells, researchers alter them in the laboratory with a gene therapy to make them recognize a protein on the cancer cells. Then they inject the altered T-cells into the patient’s bloodstream. There the T-cells order the cancerous cell to return to their normal configuration. If the cell has mutated too far to return to its original configuration, it orders the cell to self-destruct. Their results, reported in 2013, have been astounding, causing the cancer of 14 out of 16 terminally ill patients to go into remission. I think it would be correct to consider the altered T-cells nanobots.

The military has been relatively quiet about their work with nanobots. However, the use of United States military robots dates back to World War I, with its use of torpedoes. As is clear from recent conflicts, military robotics are now an indispensable technology the United States, and other countries, use to make war. A new thrust in military robotics is emerging, namely shrinking them.  For example, on December 16, 2014, the Army Research Laboratory announced creation of a “fly drone” weighing a small fraction of a gram. The fly drone’s capabilities are secret, but it is plausible the fly drone will offer the United States military the ability to enter buildings, perform surveillance, and potentially offensive operations. This gives a completely new meaning to “fly on the wall.” Although the Army did not comment on the construction of the fly drone, I judge it incorporates nanotechnology. If the Army is willing to announce development on a fly size drone, it is likely that they have even smaller more advanced drones in development.

You might wonder how does a fly drone provide offensive capabilities. Similar to the way biological flies spread diseases, the fly drone could deposit a toxic substance on an adversary’s food. For example, it may be used to deposit botulinum toxin H, the most lethal toxin in existence. The lethal dose is 100 nanograms. That amount of toxin would be impossible to see, smell, or taste.

I wrote this post to make an important point. Nanobots have move from sci-fi to science fact. Millions of nanobots can cure diseases like cancer or, as nanoweapons, become nanoweapons of mass destruction (NMD). Technology is ethically neutral. It is up to humanity to use the technology ethically.