Tag Archives: medical nanobots

Close-up of a detailed human skull and crossed bones on a textured surface.

Are Nanoweapons Paving the Road to Human Extinction?

Nanotechnology researchers continue their relentless journey to develop nanobots and they are succeeding. Nanomedicine is using nanobots to cure to cancer. Military nanotechnologies, especially nanobots, will emerge as the defining weapons of the twenty first century.

The United States military already deploys nanoweapons, such as nanotechnology based lasers, toxic nanoparticles, nanoparticle catalysts, and nano electronics. These nanoweapons give the United States significant capabilities in asymmetrical warfare. However, the US military’s  greatest quest is the development of nanobots, tiny robots built with nanotechnology.

What is it about nanobots that make them the ideal weapons? Let us address this question by taking several examples. About a third of all US fighter planes today are drones. Today’s drones are approximately one-third the size of a manned fighter jet, like the F-35. However, a new class of drones is in development, bird and even insect size drones. For example, in 2014, the Army Research Laboratory announced the creation of a “fly drone” weighing only a small fraction of a gram. This drone could conceivable fly into an adversary’s command post and provide surveillance or into the adversary’s dining area to deposit a nano poison. An insect fly drone provides the military with both surveillance and assignation capabilities. This gives a completely new meaning to “fly on the wall.”

As electronic processors shrink into the nanoscale, becoming nanoprocessors, about 1/1000 the diameter of a human hair, conceivably they could provide the fly drone with artificial intelligence. In effect, it could autonomously carry out its programmed mission.

You may wonder, How does all of this threaten human extinction? To address this question, imagine a scenario where the US military releases millions of artificially intelligent fly drones within an adversary’s boarders, programmed to target the populace via commonalities in their DNA. If each fly drone had the capability to assassinate a few people, conceivably they could wipe out an entire nation.

Although this may sound like science fiction, the United States is within a decade of having the capability. The US Army is already testing a fly drone. As for poisons, as little as 100 nano grams of  botulism H will kill a human. That quantity of poison is too small to see or taste, yet lethal and small enough for a fly drone to carry. In my book, Nanoweapons: A Growing Threat To Humanity, I classify this type of weapon as a strategic nanoweapon. This classification parallels strategic nuclear weapons that have the capability to destroy nations.

While artificially intelligent insect drones are already a scary proposition, the next step in their development is even more frightening, namely self-replicating insect drones, or more generically self- replicating nanobots. Given the exponential advance in nano electronics and artificial intelligence, characterized by Moore’s law, it is likely we will see the emergence of self-replicating nanobots in the 2050s.

Self-replicating nanobots are the ultimate invention. In medicine, they will flow through our blood preventing diseases and curing injuries. In military applications, they will have the capability to completely destroy an adversary, from its populace to its structures. This scenario was depicted in the sci-fi movie, The Day the Earth Stood Still.

Strategic nanoweapons, like their nuclear counterparts, pose a threat to humanity. The major issue is control. Will we be able to deploy strategic nanoweapons and maintain control over them? If, for example, we lost control of self-replicating nanobots, we would face a technological plague, one that we currently have no way of stopping.

In a decade, we will see the emergence of nanobots. In medicine, they will cure cancer. In warfare, they may kill millions. In the 2050s, we will see the emergence of self-replicating nanobots. In medicine, they will offer immortality. In warfare, they will pose a threat to humanity.

A detailed pencil sketch of a dynamic humanoid robotic figure in an action pose.

The Second Technological Singularity: Self-replicating Nanobots

It is widely accepted that when artificial intelligence exceeds the sum total intelligence of the human race, we will have reached a technological singularity. It qualifies as a technological singularity because it represents the first time a machine is more intelligence that all humanity. In my book, The Artificial Intelligence Revolution, I project this will occur during the 2040s. My projection aligns with the prediction of most researchers in the field.

We will reach a second technological singularity with the development of self-replicating nanobots. This begs a question, What are self-replicating nanobots? Self-replicating nanobots are robots built using nanotechnology that are able to perform programmed functions and reproduce. This raises another question, What is nanotechnology? According to the United States National Nanotechnology Initiative’s website, nano.gov, “Nanotechnology is science, engineering, and technology conducted at the nanoscale, which is about 1 to 100 nanometers.” For comparison, a human hair diameter is 100,000 nm.

The development of self-replicating nanobots qualifies as a technological singularity because it represents the development of the first artificial life forms, having rudimentary intelligence to carry out programmed functions, along with the ability to reproduce. You can think of them as the technological equivalent of bacteria and viruses. Researchers working in the fields of nanotechnology have varied opinions when this will occur. I think the divergence in projecting this singularity comes from looking at it as an isolated occurrence. Many researchers in nanotechnology lack equivalent expertise in artificial intelligence. Having worked in both fields, and authored books in both fields (The Artificial Intelligence Revolution and Nanoweapons: A Growing Threat To Humanity), I assert from experience the second singularity (i.e., the development of self-replicating nanobots) is dependent on the first singularity (i.e., an intelligent machine that exceeds the cognitive intelligence of humanity). Let us discuss why this is the case.

In technologically advanced countries, computers play a role in the design of almost all products, from fighter jets to golf balls. The fabric of society in technologically advanced countries is dependent on computers. When an aeronautical engineer designs an aircraft or a civil engineer designs a bridge, computers are intimately involved. It is fair to assert that without computers, our society would not be viable.

Nanotechnology is also becoming an integral part of technologically advanced societies, from nanotechnology-based cosmetics to nano drugs that hold the promise to cure cancer. Nanotechnology is becoming critical to building the structures of society, making steel and concrete stronger, lighter, and even self-cleaning. The worldwide market for commercial nanotechnology products is a trillion dollars. Even though most people may not be aware of it, they are likely using nanotechnology-based products daily.

Intelligent machines and nanotechnology have a strong symbiotic relationship. Integrated circuits, with nanotechnology features, power modern computers. Modern computers play a critical role in developing integrated circuits. Computer processing power is doubling approximately every eighteen months. This trend, first observed by Intel co-founder Gordon More, is termed Moore’s Law. It has held for over five decades. By contrast, nanotechnology is relatively new, emerging as a science in the late 1980s. Its importance, however, quickly became evident. In 2000, President Clinton established the National Nanotechnology Initiative, a research and development initiative involving the nanotechnology-related activities of 25 Federal agencies. Since its inception, the United States government has allocated over $20,000,000,000 to developing nanotechnology.

This brings us to a critical question, When will self-replicating nanobots be developed? Given the strong symbiotic relationship between computer power and nanotechnology, we may see both technologies progressing faster than their historical trends. My rationale is that an advance in one technology fosters advances in the other. I judge this synergy may accelerate the advancement of both technologies. Further, when intelligent machines exceed the cognitive intelligence of humanity (i.e., the first technological singularity), humanity will have the computing power required to develop self-replicating nanobots (i.e., the second technological singularity). If my judgement is correct, humanity will develop self-replicating nanobots during the 2050s.

With the advent of self-replicating nanobots, we will have the potential to use them medically to treat diseases like cancer at the cellular level. In fact, we are already doing that with medical nanobots today. On May 15, 2015, Pfizer announced it is “partnering” with Dr. Ido Bachelet, manager of Bar-Ilan University’s robot laboratory, on DNA nanobots. Next Big Future reports, “Bachelet has developed a method of producing innovative DNA molecules with characteristics that can be used to ‘program’ them to reach specific locations in the body and carry out pre-programmed operations there in response to stimulation from the body.” In this case, the pre-programming involves detecting cancer cells and delivering an existing cancer drug treatment directly to a cancerous cell, bypassing healthy cells. This is currently going into human trials as I write. Although these are not self-replicating nanobots, it provide a solid conceptual framework to understand how self-replicating nanobot my revolutionize medicine. Unfortunately, there is also a dark side.

Self-replicating nanobots can become a weapon. For example, one adversary could program self-replicating nanobots to target another adversary’s populace. It would be the technological equivalent of biological warfare. In the 2008 film, The Day the Earth Stood Still, the alien robot “GORT” disintegrates into a swarm of self-replicating nanobots shaped like bugs that cover Earth and destroy all humans and artificial structures by seemingly devouring them within seconds. Although this is science fiction, it points out a significant issue with self-replicating nanobots, namely the potential to lose control over them. If that were to happen, it could write the last line in human history.

Detailed sketch of a mechanical rabbit with intricate robotic limbs and wings in a dynamic pose.

The Rise of the Nanobots

Let’s start with a simple definition. Nanobots are nanoscale robots. Once, strictly confined to speculation and science fiction, the military and medical industry is making them a reality.

In the medical industry, specifically the area of nanomedicine, nanobots are being developed and used in human trials to cure a number of diseases, including cancer. For example, on May 15, 2015 Next Big Future reported, “Bachelet (i.e., Dr. Ido Bachelet, manager of Bar-Ilan University’s robot laboratory) has developed a method of producing innovative DNA molecules with characteristics that can be used to ‘program’ them to reach specific locations in the body and carry out pre-programmed operations there in response to stimulation from the body.” In this case, the pre-programming involves detecting cancer cells and delivering an existing cancer drug treatment directly to a cancerous cell, bypassing healthy cells. As of this writing, Dr. Bachelet and Pfizer announced “partnering” to perform human trials, using the DNA nanobots. However, there have been no reports on the human trials to date.

Other medical researchers are taking a similar approach, as reported in Science Translational Medicine, Renier J. Brentjens et. al., 20 Mar 2013. In essence, they remove some of the patient’s T-cells, which are cells produced by the patient’s thymus gland. T-cells work as part of the human immune system. After removing the T-cells, researchers alter them in the laboratory with a gene therapy to make them recognize a protein on the cancer cells. Then they inject the altered T-cells into the patient’s bloodstream. There the T-cells order the cancerous cell to return to their normal configuration. If the cell has mutated too far to return to its original configuration, it orders the cell to self-destruct. Their results, reported in 2013, have been astounding, causing the cancer of 14 out of 16 terminally ill patients to go into remission. I think it would be correct to consider the altered T-cells nanobots.

The military has been relatively quiet about their work with nanobots. However, the use of United States military robots dates back to World War I, with its use of torpedoes. As is clear from recent conflicts, military robotics are now an indispensable technology the United States, and other countries, use to make war. A new thrust in military robotics is emerging, namely shrinking them.  For example, on December 16, 2014, the Army Research Laboratory announced creation of a “fly drone” weighing a small fraction of a gram. The fly drone’s capabilities are secret, but it is plausible the fly drone will offer the United States military the ability to enter buildings, perform surveillance, and potentially offensive operations. This gives a completely new meaning to “fly on the wall.” Although the Army did not comment on the construction of the fly drone, I judge it incorporates nanotechnology. If the Army is willing to announce development on a fly size drone, it is likely that they have even smaller more advanced drones in development.

You might wonder how does a fly drone provide offensive capabilities. Similar to the way biological flies spread diseases, the fly drone could deposit a toxic substance on an adversary’s food. For example, it may be used to deposit botulinum toxin H, the most lethal toxin in existence. The lethal dose is 100 nanograms. That amount of toxin would be impossible to see, smell, or taste.

I wrote this post to make an important point. Nanobots have move from sci-fi to science fact. Millions of nanobots can cure diseases like cancer or, as nanoweapons, become nanoweapons of mass destruction (NMD). Technology is ethically neutral. It is up to humanity to use the technology ethically.