Tag Archives: Energy

A glowing plasma globe with electric arcs radiating from the center in purple and blue hues.

Is All Energy Quantized? – Do We Live In A Quantum Universe? – Part 3/3

Lastly, one element of reality remains to complete our argument that all reality consists of quantized energy—energy itself. Is all energy reducible to quantums? All data suggests that energy in any form consists of quantums. We already discussed that mass, space, and time are forms of quantized energy. We know, conclusively, that electromagnetic radiation (light) consists of discrete particles (photons). All experimental data at the quantum level (the level of atoms and subatomic particles) tells us that energy exists as discrete quantums. As we discussed before, the macro level is the sum of all elements at the micro level. Therefore, a strong case can be made that all energy consists of discrete quantums.

If you are willing to accept that all reality (mass, space, time, and energy) is composed of discrete energy quantums, we can argue we live in a Quantum Universe. As a side note, I would like to add that this view of the universe is similar to the assertions of string theory, which posits that all reality consists of a one-dimensional vibrating string of energy. I intentionally chose not to entangle the concept of a Quantum Universe with string theory. If you will pardon the metaphor, string theory is tangled in numerous interpretations and philosophical arguments. No scientific consensus says that string theory is valid, though numerous prominent physicists believe it is. For these reasons, I chose to build the concept of a Quantum Universe separate from string theory, although the two theories appear conceptually compatible.

A Quantum Universe may be a difficult theory to accept. We do not typically experience the universe as being an immense system of discrete packets of energy. Light appears continuous to our senses. Our electric lamp does not appear to flicker each time an electron goes through the wire. The book you are holding to read these words appears solid. We cannot feel the atoms that form book. This makes it difficult to understand that the entire universe consists of quantized energy. Here is a simple framework to think about it. When we watch a motion picture, each frame in the film is slightly different from the last. When we play them at the right speed, about twenty-four frames per second, we see, and our brains process continuous movement. However, is it? No. It appears to be continuous because we cannot see the frame-to-frame changes.

If we have a quantum universe, we should be able to use quantum mechanics to describe it. However, we are unable to apply quantum mechanics beyond the atomic and subatomic level. Even though quantum mechanics is a highly successful theory when applied at the atomic and subatomic level, it simply does not work at the macro level. The macro level is the level we experience every day, and the level in which the observable universe operates. Why are we unable to use quantum mechanics to describe and predict phenomena at the macro level?

Quantum mechanics deals in statistical probabilities. For example, quantum mechanics statistically predicts an electron’s position in an atom. However, macro mechanics (theories like Newtonian mechanics, and the general theory of relativity) are deterministic, and at the macro level provide a single answer for the position of an object. In fact, the two most successful theories in science, quantum mechanics and general relativity, are incompatible. For this reason, Einstein never warmed up to quantum mechanics, saying, [I can’t accept quantum mechanics because] “I like to think the moon is there even if I am not looking at it.” In other words, Einstein wanted the moon’s position to be predictable, and not deal in probabilities of where it might be.

Numerous scientists, including Einstein, argue that the probabilistic aspect of quantum mechanics suggests something is wrong with the theory. Aside from the irrefutable fact that quantum mechanics works, and mathematically predicts reality at the atomic and subatomic level, it is counterintuitive. Is the probabilistic nature of quantum mechanics a proper interpretation? Numerous philosophical answers to this question exist. One of the most interesting is the well-known thought experiment “Schrödinger’s cat,” devised by Austrian physicist Erwin Schrödinger in 1935. It was intended to put an end to the debate by demonstrating the absurdity of quantum mechanic’s probabilistic nature. It goes something like this: Schrödinger proposed a scenario with a cat in a sealed box. The cat’s life or death is depended on its state (this is a thought experiment, so go with the flow). Schrödinger asserts the Copenhagen interpretation, as developed by Niels Bohr, Werner Heisenberg, and others over a three-year period (1924–27), implies that until we open the box, the cat remains both alive and dead (to the universe outside the box). When we open the box, per the Copenhagen interpretation, the cat is alive or dead. It assumes one state or the other. This did not make much sense to Schrödinger, who did not wish to promote the idea of dead-and-alive cats as a serious possibility. As mention above, it went against the grain of Einstein, who disliked quantum mechanics because of the ambiguous statistical nature of the science. Einstein was a determinist as was Schrodinger. He felt that this thought experiment would be a deathblow to the probabilistic interpretation of quantum mechanics, since it illustrates quantum mechanics is counterintuitive. He intended it as a critique of the Copenhagen interpretation (the prevailing orthodoxy in 1935 and today). However, far from ending the debate, physicists use it as a way of illustrating and comparing the particular features, strengths, and weaknesses of each theory (macro mechanics versus quantum mechanics).

Over time, the scientific community had become comfortable with both macro mechanics and quantum mechanics. They appeared to accept that they were dealing with two different and disconnected worlds. Therefore, two different theories were needed. This appeared to them as a fact of reality. However, that view was soon about to change. The scientific community was about to discover but one reality exists. The two worlds, the macro level and the quantum level, were about to become one. This tipping point occurred in 2009-2010.

Before we go into the details, think about the implications and questions this raises.

  • Do macroscopic objects have a particle-wave duality, as assumed by quantum mechanics at the atomic and subatomic level?
  • Can macroscopic objects be modeled using wave equations, like the Schrödinger equation?
  • Will macroscopic reality behave similar to microscopic reality? For example, will it be possible to be in two places at the same time?

To approach an answer, consider what happened in 2009.

Our story starts out with Dr. Markus Aspelmeyer, an Austrian quantum physicist, who performed an experiment in 2009 between a photon and a micromechanical resonator, which is a micromechanical system typically created in an integrated circuit. The micromechanical resonator can resonate, moving up and down much like a plucked guitar string. The intriguing part is Dr. Aspelmeyer was able to establish an interaction between a photon and a micromechanical resonator, creating “strong” coupling. This is a convincing and noticeable interaction. This means he was able to transfer quantum effects to the macroscopic world. This is a first in recorded history: we observed the quantum world in order to communicate with the macro world.

In 2010, Andrew Cleland and John Martinis at the University of California (UC), Santa Barbara, working with Ph.D. student Aaron O’Connell, became the first team to experimentally induce and measure a quantum effect in the motion of a human-made object. They demonstrated that it is possible to achieve quantum entanglement at the macro level. This means that a change in the physical state of one element transmits immediately to the other.

For example, when two particles are quantum mechanically entangled, which means they have interacted and an invisible bond exists between them, changing the physical state of one particle immediately changes the physical state of the other, even when the particles are a significant distance apart. Einstein called quantum entanglement, “spukhafte Fernwirkung,” or “spooky action at a distance.” Therefore, the quantum level and the macro level, given the appropriate physical circumstances, appear to follow the same laws. In this case, they were able to predict the behavior of the object using quantum mechanics. Science and AAAS (the publisher of Science Careers) voted the work, released in March 2010, as the 2010 Breakthrough of the Year, “in recognition of the conceptual ground their experiment breaks, the ingenuity behind it and its many potential applications.”

It appears only one reality exists, even though historically, physical measurements and theories pointed to two. The macro level and quantum level became one reality in the above experiment. It is likely our theories, like quantum mechanics and general relativity, need refinement. Perhaps, we need a new theory that will apply to both the quantum level and the macro level.

This completes our picture of a Quantum Universe. We do not know or understand much. Even though we can make cogent arguments that all reality consists of quantized energy, we do not have consensus on a single theory to describe it. When we examine the micro level, as well as the atomic and subatomic level, we are able to describe and predict behavior using quantum mechanics. However, in general, we are unable to extend quantum mechanics to the macro level, the level we observe the universe in which we live. We ask why, and we do not have an answer. Recent experiments indicate that the micro level (quantum level) influences the macro level. They appear connected. Based on all observations, the macro level appears to be the sum of everything that exists at the micro level. I submit for your consideration that there is one reality, and that reality is a Quantum Universe.

Source: Unraveling the Universe’s Mysteries (2012), Louis A. Del Monte

Image: iStockPhoto.com (licensed)

Abstract digital art featuring a radiant white light at the center surrounded by intricate geometric patterns and electric green lines.

The Mysterious Nature of Energy

We scientists talk about energy, and derive equations with energy mathematically expressed in the equation as though we understand energy. The fact is: we do not. It is an indirectly observed quantity. We infer its existence. For example, in physics, we define energy as the ability of a physical system to do work on another physical system. Physics is one context that uses and defines the word energy. However, the word energy has different meanings in different contexts. Even the average person throws the term energy around in phrases like, “I don’t have any energy today,” generally inferring a lack of vigor, force, potency, zeal, push, and the like. The word energy finds its way into both the scientific community and our everyday communications, but the true essence of energy remains an enigma.

The concept of energy is an old concept. It comes from the ancient Greek word, “enérgeia,” which translates “activity or operation.” As previously stated, we do not know the exact essence of energy, but we know a great deal about the effects of energy. To approach a better understanding, consider these four fundamental properties of energy:

1. Energy is transferable from one system to another.

Transferring mass between systems results in a transfer of energy between systems. Mass and energy have been inseparably equated, since 1905, via Einstein’s famous mass–energy equivalence equation, E = mc2, where E is energy, m is mass, and c is the speed of light in a vacuum. This equation is widely held as a scientific fact. Experimental results over the last century strongly validate it. Typically, mass transfers between systems occur at the atomic level as atoms capture subatomic particles or bond to form products of different masses.

Non-matter transfer of energy is possible. For example, a system can transfer energy to another by thermal radiation (heat). The system that absorbs the thermal radiation experiences an increase in energy, typically measured by its temperature. This is how the radiators in a house raise the room temperature. Here is another example: If an object in motion strikes another object, a transfer of kinetic energy results. Consider billiard balls. When one ball strikes another, it imparts kinetic energy to the ball it strikes, causing it to move.

2.  Energy may be stored in systems.

If you pick up a rock from the ground and hold it at shoulder height, you have stored energy between the rock and ground via the gravitation attraction created between the Earth and rock. You may consider this potential energy. When you open your hand, the rock will fall back to the ground. Why? The answer is straightforward. It required your energy to hold the rock in its new position at shoulder height. As soon as you, by opening your hand, released the energy that you were providing, it reduced to a lower energy state when the gravitational field pulled the rock back to the ground.

Any type of energy that is stored is “potential energy,” and all types of potential energy appear as system mass. For example, a compressed metal spring will be slightly more massive than before it was compressed. When you compress the spring, you do work on the system. The work on the system is energy, and that energy is stored in the compressed spring as potential energy. Because of this stored potential energy, the spring becomes more massive.

3. Energy is not only transferable–it is transformable from one form to another.

Our example regarding the rock falling back to the ground is an example of energy transformation. The potential energy was transformed to kinetic energy when you opened your hand and released the rock. This is what caused the rock to fall back to the ground. Here is an industrial example. Hydroelectric plants generate electricity by using water that flows over a falls due to gravity. In effect, they are transforming the falling water (gravitational energy) into another form of energy (electricity).

4. Energy is conserved.

This is arguably the most sacred law in physics. Simply stated: Energy cannot be created or destroyed in an isolated system. The word “isolated” implies the system does not allow other systems to interact with it. A thermos bottle is an example of an isolated system. It is preventing the ambient temperature from changing the temperature inside the thermos. For example, it keeps your coffee hot for a long time. Obviously, it is not a perfectly isolated system since eventually it will lose heat to the atmosphere, and your coffee will cool to the ambient temperature that surrounds the thermos bottle. For example, in your house, the coffee in a cup will cool to room temperature.

In summary, energy may be transferred, stored, and transformed, but it cannot be created or destroyed in an isolated system. This means the total energy of an isolated system does not change.

Next, we will consider energy in different contexts. Unfortunately, since we do not know the true essence of energy, we need to describe it via the effects we observe in the context that we observe them. Here are two contexts:

1)   Cosmology and Astronomy

Stars, nova, supernova, quasar, and gamma-ray bursts are the highest-output mass into energy transformations in the universe. For example, a star is typically a large and massive celestial body, primarily composed of hydrogen. Due to its size, gravity at the star’s core is immense. The immense gravity causes the hydrogen atoms to fuse together to form helium, which causes a nuclear reaction to occur. The nuclear reaction, in effect, transforms mass into energy. In the cosmos, mass-to-energy transformations are due to gravity, and follow Einstein famous equation, E = mc2 (discussed previously). The gravity can result in nuclear fusion, as described in the above example. It can cause a dying star to collapse and form a black hole.

2) Chemistry

Energy is an attribute of the atomic or molecular structure of a substance. For example, an atom or molecule has mass. From Einstein’s mass-energy equivalence equation, (E = mc2), we know the mass equates to energy. In chemistry, an energy transformation is a chemical reaction. The chemical reaction typically results in a structural change of the substance, accompanied by a change in energy. For example, when two hydrogen atoms bond with one oxygen atom, to form a water molecule, energy emits in the form of light.

Other scientific contexts give meaning to the word energy. Two examples are biology and geology. Numerous forms of energy are accepted by the scientific community. The various forms include thermal energy, chemical energy, electric energy, radiant energy, nuclear energy, magnetic energy, elastic energy, sound energy, mechanical energy, luminous energy, and mass. I will not go into each form and context for the sake of brevity. My intent is to illustrate that the word energy in science must be understood within a specific context and form.

As mentioned above, we truly do not know the essence of energy; we infer its existence by its effects. The effects we measure often involve utilizing fundamental concepts of science, such as mass, distance, radiation, temperature, time, and electric charge. Adding to ambiguity, energy is often confused with power. Although we often equate “power” and “energy” in our everyday conversation, scientifically they are not the same. Strictly speaking, in science, power is the rate at which energy is transferred, used, or transformed. For example, a 100-watt light bulb transforms more electricity into light than a 60-watt light bulb. In this example, the electricity is the energy source. Its rate of use in the light bulbs is power. It takes more power to run a 100-watt bulb than a 60-watt bulb. Your electric bill will verify this is true.

What is it about energy that makes it mysterious? Science does not understand the nature of energy. We have learned a great deal about energy in the last century. The word energy has found its way into numerous scientific contexts as well as into our everyday vernacular, but we do not know the fundamental essence of energy. We can infer it exists. Its existence and definition is context sensitive. We do not have any instrument to measure energy directly, independent of the context. Yet, in the last century, we have learned to harness energy in various forms. We use electrical energy to power numerous everyday items, such as computers and televisions. We have learned to unleash the energy of the atom in nuclear reactors to power, for example, cities and submarines. We have come a long way, but the fundamental essence of energy remains an enigma.

In the next post, we will discuss another aspect of energy that haunts the scientific community. Does all reality consist of discrete packets (quantums) of energy? Are mass, space, time, and energy composed of quantized energy? We can make a reasonably strong case that they are. It is counterintuitive because we do not experience reality that way. For example, when you pick up a rock, you do not directly experience the atoms that make up the rock. However, the rock is nothing more than the sum of all its atoms. If all reality is made of quantized energy, we live in a Quantum Universe. What exactly is a Quantum Universe? Stay tuned, and we will explore what a Quantum Universe is in the next post.

Source: Unraveling the Universe’s Mysteries (20120, Louis A. Del Monte