Tag Archives: big bang duality

A vibrant cosmic explosion with bright orange and red hues surrounded by a dark purple and blue starry background.

Why Is There Almost No Antimatter In the Universe?

One of the great mysteries of our universe, and a weakness of the Big Bang theory, is that matter, not antimatter, totally makes up our universe. According to the Big Bang theory, there should be equal amounts of matter and antimatter. (Note: The Big Bang theory asserts that the universe originated from a highly dense energy state that expanded to form all that we observe as reality.)

If there were any significant quantities of antimatter in our galaxy, we would see radiation emitted as it interacted with matter. We do not observe this. It is natural to ask the question: where is the missing antimatter? (Recall, that antimatter is the mirror image of matter. For example, if we consider an electron matter, the positron is antimatter. The positron has the same mass and structure as an electron, but the opposite charge. The electron has a negative charge, and the positron has a positive charge. Antimatter bears no relationship to dark matter. (Dark matter is discussed in the next chapter.)

Several theories float within the scientific community to resolve the missing antimatter issue. The currently favored theories (baryogenesis theories) employ sub-disciplines of physics and statistics to describe possible mechanisms. The baryogenesis theories start out with the same premise, namely the early universe had both baryons (an elementary particle made up of three quarks) and antibaryons (the mirror image of the baryons). At this point, the universe underwent baryogenesis. Baryogenesis is a generic term for theoretical physical processes that produce an asymmetry (inequality) between matter and antimatter. The asymmetry, per the baryogenesis theories, resulted in significant amounts of residual matter, as opposed to antimatter. The major differences between the various baryogenesis theories are in the details of the interactions between elementary particles. Baryogenesis essentially boils down to the creation of more matter than antimatter. In other words, it requires the physical laws of the universe to become asymmetrical. We need to understand what this means.

The symmetry of physical laws is widely accepted by the scientific community. What does “symmetry” mean in this context?

  • First, it means that the physical laws do not change with time. If a physical law is valid today, it continues to be valid tomorrow, and any time in the future. This is a way of saying that a time translation of a physical law will not affect its validity.
  • Second, it means that the physical laws do not change with distance. If the physical law is valid on one side of the room, it is valid on the other side of the room. Therefore, any space translation of a physical law will not affect its validity.
  • Lastly, it means that the physical laws do not change with rotation. For example, the gravitational attraction between two masses does not change when the masses rotate in space, as long as the distance between them remains fixed. Therefore, any rotational translation of a physical law will not affect its validity.

This is what we mean by the symmetry of physical laws.

Next, we will address the asymmetry of physical laws. In this context, “asymmetry” means that the symmetry of physical laws no longer applies. For example, a law of physics may be valid in a specific location, but not in another, when both locations are equivalent. Is this possible? Maybe. There has been experimental evidence that the asymmetry is possible (a violation of the fundamental symmetry of physical laws). For example, radioactive decay and high-energy particle accelerators have provided evidence that asymmetry is possible. However, the evidence is far from conclusive. Most importantly, it does not fully explain the magnitude of the resulting matter of the universe.

This casts serious doubt on the baryogenesis theories. In addition, the baryogenesis theories appear biased by our knowledge of the outcome. By making certain (questionable) assumptions, and using various scientific disciplines, they result in the answer we already know to be true. The universe consists of matter, not antimatter. Therefore, baryogenesis theories may not be an objective explanation. However, apart from the Big Bang Duality theory, it is science’s best theory of the missing antimatter dilemma.

The Big Bang Duality theory, described in my book Unraveling the Universe’s Mysteries and also summarized below, provides a simpler explanation, which does not violate the fundamental symmetry of physical laws. From this viewpoint, it deserves consideration.

In essence, the Big Bang Duality theory hypothesizes that the Big Bang was the result of a collision of two infinitely dense matter-antimatter particles in the Bulk (i.e. A super-universe capable of holding countless universes. In theory, it contains our own universe, as well as other universes.).
 
This theory rests on the significant experimental evidence that when virtual particles emerge from “nothing,” they are typically created in matter-antimatter pairs. Based on this evidence, I argued in my book, Unraveling the Universe’s Mysteries, the Big Bang was a result of a duality, not a singularity as is often assumed in the Big Bang model. The duality would suggest two infinitely dense energy particles pop into existence in the Bulk. These are infinitely energy-dense “virtual particles.” One particle would be matter, the other antimatter. The collision between the two particles results in the Big Bang.
 
What does this imply? It implies that the Big Bang was the result of a matter-antimatter collision. What do we know about those types of collisions from our experiments in the laboratory? Generally, when matter and antimatter collide in the laboratory, we get “annihilation.” However, the laws of physics require the conservation of energy. Therefore, we end up with something, rather than nothing. The something can be photons, matter, or antimatter.
 
You may be tempted to consider the Big Bang Duality theory a slightly different flavor baryogenesis theory. However, the significant difference rests on the reactants, those substances undergoing the physical reaction, when the infinitely energy-dense matter-antimatter particles collide. The Big Bang Duality postulates the reactants are two particles (one infinitely energy-dense matter particle and one infinitely energy-dense antimatter particle). When the two particles collide, the laboratory evidence suggests the products that result are matter, photons, and antimatter. Contrary to popular belief, we do not get annihilation (nothing), when they collide. This would violate the conservation of energy. Consider this result. Two of the three outcomes, involving the collision of matter with antimatter, favor our current universe, namely photons and matter. This suggests that the collision of two infinitely dense matter-antimatter pairs statistically favor resulting in a universe filled with matter and photons. In other words, the universe we have. While not conclusive, it is consistent with the Big Bang being a duality. It is consistent with the reality of our current universe, and addresses the issue: where is the missing antimatter? The answer: The infinitely energy-dense matter-antimatter pair collides. The products of the collision favor matter and energy. Any resulting antimatter would immediately interact with the matter and energy. This reaction would continue until all that remains is matter and photons. In fact, a prediction of the Big Bang Duality theory would be the absence of observable antimatter in the universe. As you visualize this, consider that the infinitely energy-dense matter and antimatter particles are infinitesimally small, even to the point of potentially being dimensionless. Therefore, the collision of the two particles results in every quanta of energy in each particle contacting simultaneously.
 
You may be inclined to believe a similar process could occur from a Big Bang singularity that produces equal amounts of matter and antimatter. The problem with this theory is that the initial inflation of the energy (matter and antimatter) would quickly separate matter and antimatter. While collisions and annihilations would occur, we should still see regions of antimatter in the universe due to the initial inflation and subsequent separation. If there were such regions, we would see radiation resulting from the annihilations of antimatter with matter. We do not see any evidence of radiation in the universe that would suggest regions of antimatter. Therefore, the scientific community has high confidence that the universe consists of matter, and antimatter is absent.
 
I have sidestepped the conventional baryogenesis statistical analysis used to explain the absence of antimatter, which is held by most of the scientific community. However, the current statistical treatments require a violation of the fundamental symmetry of physical laws. Essentially, they argue the initial expansion of the infinitely dense energy point (singularity) produces more matter than antimatter, hence the asymmetry. This appears to complicate the interpretation, and violate Occam’s razor. The Big Bang Duality theory preserves the conservation of energy law, and does not require a violation of the fundamental symmetry of physical laws.
 
Let me propose a sanity check. How comfortable is your mind (judgment) in assuming a violation of the fundamental symmetry of physical laws? I suspect many of my readers and numerous scientists may feel uncomfortable about this assumption. The most successful theory in modern physics is Einstein’s special theory of relativity, which requires the laws of physics to be invariant in any inertial frame of reference (i.e., a frame of reference at rest or moving at a constant velocity). If you start with the Big Bang Duality theory, it removes this counterintuitive assumption. This results in a more straightforward, intellectually satisfying, approach, consistent with all known physical laws. Therefore, this theory also fits Occam’s razor (i.e., A principle of science that holds the simplest explanation is the most plausible one, until new data to the contrary becomes available.).
Introdution to Unraveling the Universe's Mysteries Book

Original Theories & Concepts Introduced In “Unraveling the Universe’s Mysteries”

In this post, I delineate original theories and concepts, which I first delineated in my book Unraveling the Universe’s Mysteries (2012).  The theories and concepts are the result of original research. To the best of my knowledge, they do not appear in any prior book or scientific paper. However, I acknowledge that it is possible that other authors may have expressed similar theories and concepts. I offer them for your consideration. If there are any scientific terms used, which are unfamiliar to you, please consult the “Glossary of Terms” under the “About” section found at the bottom of this website.

1. The Big Bang Duality theory

Rationale of importance:

The Big Bang Duality theory explains the origin of the Big Bang. It postulates the Big Bang is due to the collision of infinitely energy-dense matter-antimatter particles in the Bulk (super-universe). In addition, it suggests that the physical laws of our universe originate in the Bulk. Lastly, the Big Bang Duality theory explains the absence of antimatter in our universe, without requiring a violation of the fundamental symmetry of physical laws.

Discussion:

It is reasonable to consider that a quantum fluctuation in the Bulk resulted in an infinitely energy-dense particle-antiparticle pair, not a single infinitely energy-dense particle. This equates to an energy neutral system, and aligns with the conservation-of-energy law.

If the quantum fluctuation theory is correct, it makes a strong case that the scientific laws of our universe are the scientific laws of the Bulk. This implies the physical laws of the universe pre-date the Big Bang, and that if there were other universes created via quantum fluctuations, they too would follow the laws of the Bulk.

Lastly, by postulating a spontaneous creation of infinitely energy-dense matter-antimatter particle pairs that collide in the Bulk to create what is commonly referred to as the Big Bang, we are able to explain the absence of antimatter in our universe. In effect, it was consumed during the initial matter-antimatter particle collision and the subsequent interactions. This model, unlike other models of the Big Bang, does not require a violation of the fundamental symmetry of physical laws.

2. Minimum Energy Principle

Rationale of importance:

The Minimum Energy Principle states: Energy in any form seeks stability at the lowest energy state possible and will not transition to a new state unless acted on by another energy source. This implies the Big Bang went “bang” at the instant it came to exist.

Discussion:

The Minimum Energy Principle is a generalized statement of similar laws in the physical sciences. In its current formulation, it is independent of the scientific context.

3. Consider dark matter a form of energy, not a particle.

Rationale of importance:

This provides a new thrust for research, and explains why the Standard Model of particle physics does not predict the dark matter particle—WIMP (weakly interactive massive particle). In addition, it explains why efforts to detect it have been unsuccessful.

Discussion:

The existence of dark matter is not in dispute. However, serious efforts to prove that dark matter is a particle—WIMP (weakly interactive massive particle) —have been unsuccessful. In fact, The Standard Model of particle physics does not predict a WIMP particle. The Standard Model of particle physics, refined to its current formulation in the mid-1970s, is one of science’s greatest theories. If the Standard Model does not predict a WIMP particle, it raises serious doubt about the particle’s existence. All experiments to detect the WIMP particle have, to date, been unsuccessful. Major effort has been put forth by Stanford University, University of Minnesota, Fermilab, and others to detect the WIMP particle. Millions of dollars have been spent over last decade to find the WIMP particle. Despite all effort and funding, there has been no definitive evidence of its existence. This appears to beg expanding our research scope. One approach suggested is that science attempt to model dark matter using M-theory.

4. The Existence Equation Conjecture

Rationale of importance:

The Existence Equation Conjecture is, arguably, the most important theory put forward in this book. It relates time, existence, and energy. It explains the physical process related to time dilation. It rests on three pillars:

  1. The fourth dimension, although a spatial coordinate, is associated with existence in time.
  2. Movement in the fourth dimension (existence) requires enormous negative energy as suggested by the Existence Equation Conjecture (KEX4 = -.3mc2).
  3. When we add kinetic energy or gravitational energy to a particle, we reduce the amount of negative energy it requires to exist and, thus, increase its existence.

Discussion:

This equation is dimensionally correct, meaning it can be expressed in units of energy, which is an important test in physics. The equation is highly unusual. First, the kinetic energy is negative. Second, the amount of negative kinetic energy suggested by the equation, even for a small object like an apple, is enormous. The energy, for even a small object, is about equivalent to a nuclear weapon, but negative in value. This led me to postulate that the source of energy to fuel the Existence Equation Conjecture is dark energy. Modern science believes dark energy is a negative (vacuum) form of energy causing space to expand. From the Existence Equation Conjecture, we know existence requires negative energy to fuel existence. Comparing the Existence Equation Conjecture’s need for negative energy seems to suggest existence may be siphoning its required negative energy from the universe. This implies that existence and dark energy may be related.

In summary, we have a more complete picture of time’s nature, namely:

  1. Time is related to change (numerical orders of physical events)
  2. Time is related to energy via its relationship to change, since change requires energy
  3. Time is related to existence, and existence requires negative energy per the Existence Equation Conjecture
  4. The energy to fuel time (existence) may be being acquired from the universe (dark energy), causing the universe to expand (via the negative pressure we describe as dark energy). This aligns conceptually with the form of the equation, and the accelerated change in the universe.
  5. The enormousness changes in entropy (disorder) in the universe may be the price we pay for time. Since entropy increases with change, and time is a measure of change, there may be a time-entropy relationship.

The derivation and experimental verification of the Existence Equation Conjecture can be found in Appendices I and II of my book, Unraveling the Universe’s Mysteries.

5. The Quantum Universe theory

Rationale of importance:

This theory postulates that all reality, including space, consists of quantized energy.

Discussion:

The majority of experimental and theoretical data argues that the macro world, the universe in which we live, is the sum of all matter and energy quanta from the micro world (quantum level). Recent experiments demonstrate that the micro level and quantum level can influence each other, even to the point they become quantum entangled. In addition, space itself appears quantized, considering the Dirac sea, the particle theory of gravity, and the irreducible Planck length. This allows us conceptually to describe the universe as a Quantum Universe.

6. The existence of God (deity) is not scientifically provable

Rationale of importance:

This debate, God versus Science, is centuries old. It revolves around the question: can science prove or disprove God (deity) exists? The effects of such a proof would be profound.

Discussion:

This debate is essentially unresolvable. The nature of being “God” implies a supernatural being. Science deals with natural phenomena. Logically, it appears irrational to believe that science, which attempts to understand, model, and predict natural phenomena, is extendable to investigate supernatural phenomena. Obviously, if the existence of God were provable, religious leaders would not ask for faith. It is a choice, to believe or not to believe. Conversely, science does not require belief as the final step in the process. Belief plays a role in science, especially as new theories surface, but ultimately scientists seek experimental verification.

All of the above theories and concepts are fully discussed in my book Unraveling the Universe’s Mysteries.

Nature of Light

What Made the Big Bang Go Bang? Part 2/2 (Conclusion)

Discussing the Big Bang in terms of time, as we typically understand time, is difficult. It will not do any good to look at your watch or think in small fractions of a second. Stop-motion photography will not work this time. Those times are infinitely large compared to Planck time (~ 10-43 seconds, which is a one divided by a one with forty-three zero after it). Theoretically, Planck time is the smallest timeframe we will ever be able to measure. So far, we have not even come close to measuring Planck time. The best measurement of time to date is of the order 10-18 seconds.

What is so significant about Planck time? The fundamental constants of the universe formulate Planck time, not arbitrary units. According to the laws of physics, we would be unable to measure “change” if the time interval were shorter that Planck time. In other words, Planck time is the shortest interval we humans are able to measure, or even comprehend change to occur. Scientifically, it can be argued that no time interval is shorter that Planck time. Thus, the most rapid change can only occur in concert with Planck time, and no faster. Therefore, when we discuss the initiation of the Big Bang, the smallest time interval we can consider is Planck time.

The whole notion of Planck time, and its relationship to the Big Bang, begs another question. Did time always exist? Most physicists say NO. Time requires energy changes, and that did not occur until the instant of the Big Bang. Stephen Hawking, one of the world’s most prominent physicists and cosmologists, is on record that he believes time started with the Big Bang. Dr. Hawking asserts that if there was a time before the Big Bang, we have no way to access the information. However, an argument can be made that time pre-dates the Big Bang. How is this possible?

If we consider the Big Bang is the result of a quantum fluctuation in the Bulk, energy changes are occurring in the Bulk. This implies time exists in the Bulk and pre-dates the Big Bang. This begs the question: is there any evidence of a Bulk and other universes? A growing number of scientists say YES. They cite evidence that our universe bumped into other universes in the distant past. What is the evidence? They cite unusual ring patterns on the cosmic microwave background. The cosmic microwave background is leftover radiation from the Big Bang, and is the most-distant thing we can see in the universe. It is remarkably uniform, with the exception of the unusual ring patterns. Scientists attribute the ring patterns to bumps from other universes. Two articles discuss this finding.

  • First evidence of other universes that exist alongside our own after scientists spot “cosmic bruises,” by Niall Firth, December 17, 2010 (http://www.dailymail.co.uk).
  • Is Our Universe Inside a Bubble? First Observational Test of the “Multiverse.” ScienceDaily.com, August 3, 2011.

Obviously, this is controversial, and even the scientist involved caution the results are initial findings, not proof. It is still intriguing, and lends fuel to the concept of there being other universes. This would suggest time, in the cosmic sense, transcends the Big Bang. As impossible as it would seem to prove other universes, science has founds ways of proving similar scientific mysteries. The prominent physicist, Michio Kaku, said it best in Voices of Truth (Nina L. Diamond, 2000), “A hundred years ago, Auguste Compte, … a great philosopher, said that humans will never be able to visit the stars, that we will never know what stars are made out of, that that’s the one thing that science will never ever understand, because they’re so far away. And then, just a few years later, scientists took starlight, ran it through a prism, looked at the rainbow coming from the starlight, and said: ‘Hydrogen!’ Just a few years after this very rational, very reasonable, very scientific prediction was made, that we’ll never know what stars are made of.” This argues that what seems impossible to prove today might be a scientific fact tomorrow.

A theoretical case argues that cosmic time in the Bulk pre-dated the Big Bang. Eventually we may be able to prove it. It is reasonable to believe time for our universe started with the Big Bang. This is our reality. This is consistent with Occam’s razor, which states the simplest explanation is the most plausible one (until new data to the contrary is available). For our universe, the Big Bang started the clock ticking, with the smallest tick being Planck time.

We are finally in a position to answer the two crucial questions. First, what made the big bang go bang? Second, how long did the infinitely dense energy point exist before it went bang?

Why did the Big Bang go bang?

The Big Bang followed the Minimum Energy Principle, “Energy in any form seeks stability at the lowest energy state possible, and will not transition to a new state unless acted on by another energy source.” The infinitely dense energy point, which science terms a “singularity,” sought stability at the lowest energy state possible. If it was “duality,” as argued in Chapter 2, the collision of the infinitely energy-dense matter and antimatter particles would represent the unstable infinitely energy-dense state. Therefore, the arguments presented apply equally to a “singularity” or “duality.” Being infinitely energy-dense, implies instability and minimum entropy (ground-state entropy). Thus, it required dilution to become stable, which caused entropy to increase. The dilution came in the form of the “Big Bang.” Since we were dealing with an unstable infinitely energy-dense point, the Big Bang went bang at the instant of existence. The instant of existence would correlate to the smallest time interval science can conceive, the Planck time. This process is continuing today as space continues its accelerated expansion.

This gives us a reasonable explanation of why the Big Bang went bang. It argues that it went “bang” at the exact instant it came to exist.

This post is based on my book, Unraveling the Universe’s Mysteries (2012), available from Amazon.

Abstract digital art featuring a radiant white light at the center surrounded by intricate geometric patterns and electric green lines.

Where Is the Missing Antimatter? Part 2/2

In essence, the Big Bang Duality theory hypothesizes that the Big Bang was the result of a collision of two infinitely dense matter-antimatter particles in the Bulk (i.e., a super-universe capable of holding countless universes, including our own).  This theory rests on the significant experimental evidence that when virtual particles emerge in a vacuum, they are thought by some physicists to be created in matter-antimatter pairs. Based on this evidence, I argue the Big Bang was a result of a duality, not a singularity as is often assumed in the Big Bang model. The duality would suggest two infinitely dense energy particles pop into existence in the Bulk. These are infinitely energy-dense “virtual particles.” One particle would be matter, the other antimatter. The collision between the two particles results in the Big Bang.

What does this imply? It implies that the Big Bang was the result of a matter-antimatter collision. What do we know about those types of collisions from our experiments in the laboratory? Generally, when matter and antimatter collide in the laboratory, we get “annihilation.” However, the laws of physics require the conservation of energy. Therefore, we end up with something, rather than nothing. The something can be photons, matter, or antimatter.

You may be tempted to consider the Big Bang Duality theory a slightly different flavor baryogenesis theory. However, the significant difference rests on the reactants, those substances undergoing the physical reaction, when the infinitely energy-dense matter-antimatter particles collide. The Big Bang Duality postulates the reactants are two particles (one infinitely energy-dense matter particle and one infinitely energy-dense antimatter particle). When the two particles collide, the laboratory evidence suggests the products that result are matter, photons, and antimatter. Contrary to popular belief, we do not get annihilation (nothing), when they collide. This would violate the conservation of energy. Consider this result. Two of the three outcomes, involving the collision of matter with antimatter, favor our current universe, namely photons and matter. In 2010, CERN scientists announced that they experimentally verified that the collision of matter with antimatter slightly favored the formation of matter (versus antimatter) by approximately 1%. This suggests that the collision of two infinitely dense matter-antimatter pairs statistically favor resulting in a universe filled with matter (equivalent to 1% of the total matter we started with) and photons. In other words, it favors the universe we have. While not conclusive, it is consistent with the Big Bang being a duality. It is consistent with the reality of our current universe, and addresses the issue: where is the missing antimatter? The answer: The infinitely energy-dense matter-antimatter pair collides. The products of the collision favor matter and energy. Any resulting antimatter would immediately interact with the matter and energy. This reaction would continue until all that remains is matter (equivalent to 1% of what we started with) and photons. In fact, a prediction of the Big Bang Duality theory would be the absence of observable antimatter in the universe. As you visualize this, consider that the infinitely energy-dense matter and antimatter particles are infinitesimally small, even to the point of potentially being dimensionless. Therefore, the collision of the two particles results in every quanta of energy in each particle contacting simultaneously.

You may be inclined to believe a similar process could occur from a Big Bang singularity that produces equal amounts of matter and antimatter. The problem with this theory is that the initial inflation of the energy (matter and antimatter) would quickly separate matter and antimatter. While collisions and annihilations would occur, we should still see regions of antimatter in the universe due to the initial inflation and subsequent separation. If there were such regions, we would see radiation resulting from the annihilations of antimatter with matter. We do not see any evidence of radiation in the universe that would suggest regions of antimatter.

I have sidestepped the conventional baryogenesis statistical analysis used to explain the absence of antimatter, which is held by most of the scientific community. However, the current statistical treatments require a violation of the fundamental symmetry of physical laws. Essentially, they argue the initial expansion of the infinitely dense energy point (singularity) produces more matter than antimatter, hence the asymmetry. This appears to complicate the interpretation, and violate Occam’s razor (a principle of science that holds the simplest explanation is the most plausible one, until new data to the contrary becomes available). The Big Bang Duality theory preserves the conservation of energy law and does not require a violation of the fundamental symmetry of physical laws.

Let me propose a sanity check. How comfortable is your mind (judgment) in assuming a violation of the fundamental symmetry of physical laws? I suspect many of my readers and numerous scientists may feel uncomfortable about this assumption. If you start with the Big Bang Duality theory, it removes this counterintuitive assumption. This results in a more straightforward, intellectually satisfying approach, consistent with all known physical laws. Therefore, this theory fits Occam’s razor.

The above post is based on material from Unraveling the Universe’s Mysteries (2012), available in paperback and Kindle editions at Amazon.com.

Universe's Accelerated Expansion

The Birth of the Universe – The Origin of the Big Bang

This post is based on material from my book,  Unraveling the Universe’s Mysteries, 2012, Louis A. Del Monte (available at Amazon http://amzn.to/Zo1TGn)

At the turn of the Twentieth Century, science held that the universe was eternal and static. This meant it had no beginning. Nor would it ever end. In other words, the universe was in “steady state.” At the beginning of the Twentieth Century, as I mentioned above, telescopes were crude and unable to focus on other galaxies. In addition, no theories of the universe were causing science to doubt the current dogma of a steady-state universe. All of that was about to change.

In 1916, Albert Einstein developed his general theory of relativity. It was termed “general” because it applied to all frames of reference, not only frames at rest or moving at a constant velocity (inertial frames). The general theory of relativity predicted that the universe was either expanding or contracting. This should have been a pivotal clue that the current scientific view of the universe as eternal and static might be wrong. However, Einstein’s paradigm of an eternal and static universe was so strong, he disregarded his own results. He quickly reformulated the equations incorporating a “cosmological constant.” With this new mathematical expression plugged into the equations, the equations of general relativity yielded the answer Einstein believed was right. The universe was in a steady-state. This means it was neither expanding nor contracting. The world of science accepted this, and continued entrenched in its belief of a steady-state universe. However, as telescopes began to improve, this scientific theory was destined to be shattered.

In 1929, Edwin Hubble, using the new Mt. Wilson 100-inch telescope, discovered the universe was expanding. In time, other astronomers confirmed Hubble’s discovery. This forced Einstein to call the cosmological constant his “greatest blunder.” This completely shattered the steady-state theory of the universe. In fact, this discovery was going to pave the way to an even greater discovery, the Big Bang theory.

The Big Bang theory holds that the universe started 13.8 billion years ago as an infinitely dense energy point that expanded suddenly to create the universe. This is an excellent example of why the Big Bang theory belongs to the class of theories referred to as “cosmogonies” (theories that suggest the universe had a beginning). The Big Bang is widely documented in numerous scientific works, and is widely held as scientific fact by the majority of the scientific community.

However, what gave birth to the Big Bang? Where did the initial energy come from?

To unravel this mystery, we will start with an unusual phenomenon observed in the laboratory, namely spontaneous particle production or “virtual particles,” which are particles that form in a laboratory vacuum, apparently coming from nothing. This is a scientific fact, and there is a laundry list that documents virtual particles are real. Some physicists call this spontaneous particle production.

The best-known proponent of the idea that a quantum fluctuation gave birth to the energy of the Big Bang is Canadian-American theoretical physicist, Lawrence Maxwell Krauss. In the simplest terms, Dr. Krauss ascribes the creation of the universe to a quantum fluctuation (i.e., a quantum fluctuation results when a point in space experiences a temporary change in energy), similar to how virtual particles gain existence.

I found Dr. Krauss’ hypothesis convincing, especially in light of what we observe regarding virtual particles. However, one intriguing aspect about virtual particles is that we sometimes observe their occurrence in matter-antimatter pairs. This raised a question. Why would the Big Bang “particle” be a singularity? In this context, we can define a “singularity” as an infinitely energy-dense particle. Numerous observations about virtual particles suggest a “duality.” A “duality,” in this context, would refer to an infinitely dense energy particle pair (one matter particle, and the other an antimatter particle). How would all this play out?

First, we need to postulate a super-universe, one capable of quantum fluctuations. Cosmologists call the super-universe the “Bulk.” The Bulk is “empty” space, which gives existence to infinitely energy-dense matter-antimatter virtual particles. These collide and initiate the Big Bang. If this view of reality is true, it makes the multiverse concept more plausible. Other infinitely energy-dense matter-antimatter particles continually pop in and out of existence in the Bulk, similar to the way that virtual matter-antimatter particles do in the laboratory. When this occurs in the Bulk, a collision between the particles initiates a Big Bang. Therefore, considering the billions of galaxies in the universe, there may be billions of universes in the Bulk.

I have termed this theory the Big Bang Duality, and I discuss it fully in my book, Unraveling the Universe’s Mysteries (2012), available on Amazon (http://amzn.to/Zo1TGn).

Universe's Accelerated Expansion

Big Bang Duality Theory: The Big Bang’s Origin

Physicist Louis Del Monte introduces the Big Bang Duality theory to explain the origin of the Big Bang. This theory of the origin of the Big Bang addresses three mysteries, including the origin of the Big Bang, the initial inflation of the early universe, and the near absence of antimatter in the universe. Del Monte’s new book, “Unraveling the Universe’s Mysteries,” available at Amazon.com http://amzn.to/STe9fW.  For more information about Louis A. Del Monte visit http://louisdelmonte.com.