Tag Archives: AI

A stylized blue and white vintage microphone with musical notes in the background.

“The Artificial Intelligence Revolution” Interview Featured On Blog Talk Radio

My interview on Johnny Tan’s program (From My Mama’s Kitchen®) is featured as one of “Today’s Best” on Blog Talk Radio’s home page. This is a great honor. Below is the player from our interview. It displays a slide show of my picture as well as the book cover while it plays the interview.

Discover Moms and Family Internet Radio with FMMK Talk Radio on BlogTalkRadio
Side profile of a futuristic humanoid robot with a white face and visible mechanical components against a pale blue background.

Is Strong Artificial Intelligence a New Life-Form? – Part 4/4 (Conclusion)

In our previous posts, we discussed that there is an awareness that SAMs (i.e., strong artificially intelligent machines) may become hostile toward humans, and AI remains an unregulated branch of engineering. The computer you buy eighteen months from now will be twice as capable as the one you can buy today.

Where does this leave us regarding the following questions?

  • Is strong AI a new life-form?
  • Should we afford these machines “robot” rights?

In his 1990 book The Age of Intelligent Machines, Kurzweil predicted that in 2099 organic humans will be protected from extermination and respected by strong AI, regardless of their shortcomings and frailties, because they gave rise to the machines. To my mind the possibility of this scenario eventually playing out is questionable. Although I believe a case can be made that strong AI is a new life-form, we need to be extremely careful with regard to granting SAMs rights, especially rights similar to those possessed by human. Anthony Berglas expresses it best in his 2008 book Artificial Intelligence Will Kill Our Grandchildren, in which he notes:

  • There is no evolutionary motivation for AI to be friendly to humans.
  • AI would have its own evolutionary pressures (i.e., competing with other AIs for computer hardware and energy).
  • Humankind would find it difficult to survive a competition with more intelligent machines.

Based on the above, carefully consider the following question. Should SAMs be granted machine rights? Perhaps in a limited sense, but we must maintain the right to shut down the machine as well as limit its intelligence. If our evolutionary path is to become cyborgs, this is a step we should take only after understanding the full implications. We need to decide when (under which circumstances), how, and how quickly we take this step. We must control the singularity, or it will control us. Time is short because the singularity is approaching with the stealth and agility of a leopard stalking a lamb, and for the singularity, the lamb is humankind.

Source: The Artificial Intelligence Revolution (2014), Louis A. Del Monte

A metallic skull with glowing red eyes and wires attached, set against a black background.

Is Strong Artificial Intelligence a New Life-Form? – Part 3/4

Can we expect an artificially intelligent machine to behave ethically? There is a field of research that addresses this question, namely machine ethics. This field focuses on designing artificial moral agents (AMAs), robots, or artificially intelligent computers that behave morally. This thrust is not new. More than sixty years ago, Isaac Asimov considered the issue in his collection of nine science-fiction stories, published as I, Robot in 1950. In this book, at the insistence of his editor, John W. Campbell Jr., Asimov proposed his now famous three laws of robotics.

  1. A robot may not injure a human being or through inaction allow a human being to come to harm.
  2. A robot must obey the orders given to it by human beings, except in cases where such orders would conflict with the first law.
  3. A robot must protect its own existence as long as such protection does not conflict with the first or second law.

Asimov, however, expressed doubts that the three laws would be sufficient to govern the morality of artificially intelligent systems. In fact he spent much of his time testing the boundaries of the three laws to detect where they might break down or create paradoxical or unanticipated behavior. He concluded that no set of laws could anticipate all circumstances. It turns out Asimov was correct.

To understand just how correct he was, let us discuss a 2009 experiment performed by the Laboratory of Intelligent Systems in the Swiss Federal Institute of Technology in Lausanne. The experiment involved robots programmed to cooperate with one another in searching out a beneficial resource and avoiding a poisonous one. Surprisingly the robots learned to lie to one another in an attempt to hoard the beneficial resource (“Evolving Robots Learn to Lie to Each Other,” Popular Science, August 18, 2009). Does this experiment suggest the human emotion (or mind-set) of greed is a learned behavior? If intelligent machines can learn greed, what else can they learn? Wouldn’t self-preservation be even more important to an intelligent machine?

Where would robots learn self-preservation? An obvious answer is on the battlefield. That is one reason some AI researchers question the use of robots in military operations, especially when the robots are programmed with some degree of autonomous functions. If this seems farfetched, consider that a US Navy–funded study recommends that as military robots become more complex, greater attention should be paid to their ability to make autonomous decisions (Joseph L. Flatley, “Navy Report Warns of Robot Uprising, Suggests a Strong Moral Compass,” www.engadget.com). Could we end up with a Terminator scenario (one in which machines attempt to exterminate the human race)? This issue is real, and researchers are addressing it to a limited extent. Some examples include:

  • In 2008 the president of the Association for the Advancement of Artificial Intelligence commissioned a study titled “AAAI Presidential Panel on Long-Term AI Futures.” Its main purpose was to address the aforementioned issue. AAAI’s interim report can be accessed at http://research.microsoft.com/en-us/um/people/horvitz/AAAI_Presidential_Panel_2008-2009.htm.
  • Popular science-fiction author Vernor Vinge suggests in his writings that the scenario of some computers becoming smarter than humans may be somewhat or possibly extremely dangerous for humans (Vernor Vinge, “The Coming Technological Singularity: How to Survive in the Post-Human Era,” Department of Mathematical Sciences, San Diego State University, 1993).
  • In 2009 academics and technical experts held a conference to discuss the hypothetical possibility that intelligent machines could become self-sufficient and able to make their own decisions (John Markoff, “Scientists Worry Machines May Outsmart Man,” The New York Times, July 26, 2009). They noted: 1)Some machines have acquired various forms of semiautonomy, including being able to find power sources and independently choose targets to attack with weapons. 2)Some computer viruses can evade elimination and have achieved “cockroach intelligence.”
  • The Singularity Institute for Artificial Intelligence stresses the need to build “friendly AI” (i.e., AI that is intrinsically friendly and humane). In this regard Ni ck Bostrom, a Swedish philosopher at St. Cross College at the University of Oxford, and Eliezer Yudkowsky, an American blogger, writer, and advocate for friendly artificial intelligence, have argued for decision trees over neural networks and genetic algorithms. They argue that decision trees obey modern social norms of transparency and predictability. Bostrom also published a paper, “Existential Risks,” in the Journal of Evolution and Technology that states artificial intelligence has the capability to bring about human extinction.
  • In 2009 authors Wendell Wallach and Colin Allen addressed the question of machine ethics in Moral Machines: Teaching Robots Right from Wrong (New York: Oxford University Press). In this book they brought greater attention to the controversial issue of which specific learning algorithms to use in machines.

While the above discussion indicates there is an awareness that SAMs may become hostile toward humans, no legislation or regulation has resulted. AI remains an unregulated branch of engineering, and the computer you buy eighteen months from now will be twice as capable as the one you can buy today.

Where does this leave us? We will address the key questions in the next post.

Source: The Artificial Intelligence Revolution (2014), Louis A. Del Monte

A humanoid robot with an extended hand under the text 'The Artificial Intelligence Revolution' questioning AI's role in serving or replacing humans.

The Artificial Intelligence Revolution – Will Artificial Intelligence Serve Us Or Replace Us?

This post is taken from the introduction of my new book, The Artificial Intelligence Revolution. Enjoy!

This book is a warning. Through this medium I am shouting, “The singularity is coming.” The singularity (as first described by John von Neumann in 1955) represents a point in time when intelligent machines will greatly exceed human intelligence. It is, by way of analogy, the start of World War III. The singularity has the potential to set off an intelligence explosion that can wield devastation far greater than nuclear weapons. The message of this book is simple but critically important. If we do not control the singularity, it is likely to control us. Our best artificial intelligence (AI) researchers and futurists are unable to accurately predict what a postsingularity world may look like. However, almost all AI researchers and futurists agree it will represent a unique point in human evolution. It may be the best step in the evolution of humankind or the last step. As a physicist and futurist, I believe humankind will be better served if we control the singularity, which is why I wrote this book.

Unfortunately the rise of artificial intelligence has been almost imperceptible. Have you noticed the word “smart” being used to describe machines? Often “smart” means “artificial intelligence.” However, few products are being marketed with the phrase “artificial intelligence.” Instead they are simply called “smart.” For example you may have a “smart” phone. It does not just make and answer phone calls. It will keep a calendar of your scheduled appointments, remind you to go to them, and give you turn-by-turn driving directions to get there. If you arrive early, the phone will help you pass the time while you wait. It will play games with you, such as chess, and depending on the level of difficulty you choose, you may win or lose the game. In 2011 Apple introduced a voice-activated personal assistant, Siri, on its latest iPhone and iPad products. You can ask Siri questions, give it commands, and even receive responses. Smartphones appear to increase our productivity as well as enhance our leisure. Right now they are serving us, but all that may change.

The smartphone is an intelligent machine, and AI is at its core. AI is the new scientific frontier, and it is slowly creeping into our lives. We are surrounded by machines with varying degrees of AI, including toasters, coffeemakers, microwave ovens, and late-model automobiles. If you call a major pharmacy to renew a prescription, you likely will never talk with a person. The entire process will occur with the aid of a computer with AI and voice synthesis.

The word “smart” also has found its way into military phrases, such as “smart bombs,” which are satellite-guided weapons such as the Joint Direct Attack Munition (JDAM) and the Joint Standoff Weapon (JSOW). The US military always has had a close symbiotic relationship with computer research and its military applications. In fact the US Air Force, starting in the 1960s, has heavily funded AI research. Today the air force is collaborating with private industry to develop AI systems to improve information management and decision making for its pilots. In late 2012 the science website www.phys.org reported a breakthrough by AI researchers at CarnegieMellonUniversity. Carnegie Mellon researchers, funded by the US Army Research Laboratory, developed an AI surveillance program that can predict what a person “likely” will do in the future by using real-time video surveillance feeds. This is the premise behind the CBS television program Person of Interest.

AI has changed the cultural landscape. Yet the change has been so gradual that we hardly have noticed the major impact it has. Some experts, such as Ray Kurzweil, an American author, inventor, futurist, and the director of engineering at Google, predict that in about fifteen years, the average desktop computer will have a mind of its own, literally. This computer will be your intellectual equal and will even have a unique personality. It will be self-aware. Instead of just asking simple questions about the weather forecast, you may be confiding your deepest concerns to your computer and asking it for advice. It will have migrated from personal assistant to personal friend. You likely will give it a name, much in the same way we name our pets. You will be able to program its personality to have interests similar to your own. It will have face-recognition software, and it will recognize you and call you by name, similar to the computer HAL 9000 in Arthur C. Clarke’s 2001: A Space Odyssey. The conversations between you and your “personal friend” will appear completely normal. Someone in the next room who is not familiar with your voice will not be able to tell which voice belongs to the computer and which voice belongs to you.

By approximately the mid-twenty-first century, Kurzweil predicts, the intelligence of computers will exceed that of humans, and a $1,000 computer will match the processing power of all human brains on Earth. Although, historically, predictions regarding advances in AI have tended to be overly optimistic, all indications are that Kurzweil is on target.

Many philosophical and legal questions will emerge regarding computers with artificial intelligence equal to or greater than that of the human mind (i.e., strong AI). Here are just a few questions we will ask ourselves after strong AI emerges:

  • Are strong-AI machines (SAMs) a new life-form?
  • Should SAMs have rights?
  • Do SAMs pose a threat to humankind?

It is likely that during the latter half of the twenty-first century, SAMs will design new and even more powerful SAMs, with AI capabilities far beyond our ability to comprehend. They will be capable of performing a wide range of tasks, which will displace many jobs at all levels in the work force, from bank tellers to neurosurgeons. New medical devices using AI will help the blind to see and the paralyzed to walk. Amputees will have new prosthetic limbs, with AI plugged directly into their nervous systems and controlled by their minds. The new prosthetic limb not only will replicate the lost limb but also be stronger, more agile, and superior in ways we cannot yet imagine. We will implant computer devices into our brains, expanding human intelligence with AI. Humankind and intelligent machines will begin to merge into a new species: cyborgs. It will happen gradually, and humanity will believe AI is serving us.

Computers with strong AI in the late twenty-first century, however, may see things differently. We may appear to those machines much the same way bees in a beehive appear to us today. We know we need bees to pollinate crops, but we still consider bees insects. We use them in agriculture, and we gather their honey. Although bees are essential to our survival, we do not offer to share our technology with them. If wild bees form a beehive close to our home, we may become concerned and call an exterminator.

Will the SAMs in the latter part of the twenty-first century become concerned about humankind? Our history proves we have not been a peaceful species. We have weapons capable of destroying all of civilization. We squander and waste resources. We pollute the air, rivers, lakes, and oceans. We often apply technology (such as nuclear weapons and computer viruses) without fully understanding the long-term consequences. Will SAMs in the late twenty-first century determine it is time to exterminate humankind or persuade humans to become cyborgs (i.e., humans with brains enhanced by implanted artificial intelligence and potentially having organ and limb replacements from artificially intelligent machines)? Will humans embrace the prospect of becoming cyborgs? Becoming a cyborg offers the opportunity to attain superhuman intelligence and abilities. Disease and wars may be just events stored in our memory banks and no longer pose a threat to cyborgs. As cyborgs we may achieve immortality.

According to David Hoskins’s 2009 article, “The Impact of Technology on Health Delivery and Access” (www.workers.org/2009/us/sickness_1231):

An examination of Centers for Disease Control statistics reveals a steady increase in life expectancy for the U.S. population since the start of the 20th century. In 1900, the average life expectancy at birth was a mere 47 years. By 1950, this had dramatically increased to just over 68 years. As of 2005, life expectancy had increased to almost 78 years.

Hoskins attributes increased life expectancy to advances in medical science and technology over the last century. With the advent of strong AI, life expectancy likely will increase to the point that cyborgs approach immortality. Is this the predestined evolutionary path of humans?

This may sound like a B science-fiction movie, but it is not. The reality of AI becoming equal to that of a human mind is almost at hand. By the latter part of the twenty-first century, the intelligence of SAMs likely will exceed that of humans. The evidence that they may become malevolent exists now, which I discuss later in the book. Attempting to control a computer with strong AI that exceeds current human intelligence by many folds may be a fool’s errand.

Imagine you are a grand master chess player teaching a ten-year-old to play chess. What chance does the ten-year-old have to win the game? We may find ourselves in that scenario at the end of this century. A computer with strong AI will find a way to survive. Perhaps it will convince humans it is in their best interest to become cyborgs. Its logic and persuasive powers may be not only compelling but also irresistible.

Artificial intelligence is an embryonic reality today, but it is improving exponentially. By the end of the twenty-first century, we will have only one question regarding artificial intelligence: Will it serve us or replace us?

Source: The Artificial Intelligence Revolution (2014), Louis A. Del Monte

Digital illustration of a human head with a microchip embedded in the forehead, symbolizing AI or brain-computer interface technology.

Artificial Intelligence Explained (video) – Part 1/2

https://www.youtube.com/watch?v=UBCNW6PD4ds

Artificial Intelligence Explained – Physicist Louis Del Monte discusses supercomputers and artificial intelligence. Based on the rate that computer science is progressing, by the year 2029 computers will exist that can replicate the human mind. It can become self-aware, and be considered a life form. In time, they will be able to replicate millions of human minds, and in a sense, become a “universe.” By the year 2050, computers will have advance to the point that they will far exceed the intelligence of a human mind. In fact, 2050 era computers may view humans the same way humans view insects.

This subject is also fully discussed in Louis Del Monte’s new book, Unraveling the Universe’s Mysteries (available in paper back or as an eBook on Amazon http://amzn.to/Zo1TGn and Barnes & Noble http://bit.ly/RAv4FL).

For more information about Louis Del Monte, please follow Louis Del Monte on Twitter (https://twitter.com/delmontelouis), and view his Facebook page at https://www.facebook.com/DelMonte.Louis