Category Archives: Universe Mysteries

The iconic pyramids of Egypt stand majestically under a colorful sky at sunset in the desert.

Cosmic Rays Reveal Hidden Chamber in Great Pyramid of Giza

For millennia, grave robbers and archaeologists have been digging tunnels in search of a hidden room in Khufu’s Pyramid (a.k.a. The Great Pyramid of Giza). Until today, they were literally searching in the dark. Now, using cosmic-ray muon radiography, Kunihiro Morishima’s, et al., publication in Nature is providing a roadmap, potentially a treasure map, to a previously unknown chamber in Khufu’s Pyramid. In their article, they report “Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons discovery of a large void (with a cross section similar to the Grand Gallery and a length of 30 m minimum) above the Grand Gallery, which constitutes the first major inner structure found in the Great Pyramid since the 19th century.”

Cosmic ray-muons are subatomic particles, with an electrical charge equal to an electron, but with a mass around 200 times greater than an electron. Muons form in the upper layer of the Earth’s atmosphere, the by-products of cosmic rays (i.e., a highly energetic atomic nuclei) colliding with molecules in the upper atmosphere. Traveling near the speed of light, approximately10,000 muons reach every square meter of the earth’s surface a minute. Two factors make muons useful:

  1. Their ability to penetrate solids deeper than x-rays
  2. The difference in their speed in solids (i.e., slower) than air (i.e., faster)

Armed with this knowledge, Kunihiro Morishima, et al., used three different muon detection technologies and three independent analyses to confirm this hidden chamber, now named, “ScanPyramids Big Void.”

This marks the potential beginning of a new field in archeology, namely archeological cosmic-ray muon radiography. According to the Nature article, “While there is currently no information about the role of this void, these findings show how modern particle physics can shed new light on the world’s archaeological heritage.”

Using muons to generate three-dimensional images of volumes is not new. Developed in the 1950s, the technology is termed “muon tomography.” Current applications include detecting nuclear material in road transport vehicles and cargo containers for security reasons and non-invasive nuclear waste characterization for safety reasons. However, the Nature article marks the first archeological application.

Khufu’s Pyramid, built on the Giza Plateau (Egypt), dates back to the pharaoh Khufu (Cheops), who reigned from 2509 to 2483 BCE. It is one of the oldest and largest monuments on Earth. However, there is no consensus regarding how the ancient Egyptians constructed it.

Muons have a rich history in scientific discovery. The Rossi–Hall experiment in 1940 confirmed Einstein’s time dilation effect, as predicted in his theory of special relativity. In 1963, the Frisch-Smith experiment confirmed Rossi-Hall’s experiment and measured mean muon velocities between 0.995 c and 0.9954 c (where c is the speed of light in a vacuum). In 1977, Bailey et al. measured the lifetime of positive and negative muons using the CERN Muon storage ring (particle accelerator). This experiment confirmed both time dilation and the twin paradox. The twin paradox predicts, via Einstein’s special theory of relativity, that one twin in a rocket ship traveling near the speed of light will age slower than the other twin, who is standing stationary on the Earth.

Our friend the muon continues to help us push back the frontiers of science, from Einstein’s special theory of reality to a hidden chamber in Khufu’s Pyramid.

Universe's Accelerated Expansion

Why is there more matter than antimatter?

According to the Big Bang theory, their should be equal parts of matter and antimatter in our Universe. Conventional wisdom states that they should have annihilated each other, resulting in radiation. If that were true, we should have a Universe filled with only radiation. However, the Universe we observe consists of both radiation and matter.  If there were any significant quantities of antimatter in our Universe, we would see radiation emitted as it interacted with matter. We do not observe this. Therefore, it is natural to ask, “What happened to all the antimatter?”

Let’s start with a simple definition of antimatter. Antimatter is the mirror image of matter. For example, if we consider an electron matter, the positron is antimatter. The positron has the same mass and structure as an electron, but the opposite charge. The electron has a negative charge, and the positron has a positive charge.

In 2010 – 2013, scientists using the Large Hadron Collider have shown glimpses of evidence that suggest antimatter decays faster than matter, but the numbers are relatively small and do not fully explain why we have a Universe of matter and radiation. In addition, there is not full agreement in the scientific community regarding the different rates of decay of matter versus antimatter.

Several theories float within the scientific community to resolve the missing antimatter issue. The currently favored theories (baryogenesis theories) employ sub-disciplines of physics and statistics to describe possible mechanisms. The baryogenesis theories start out with the same premise, namely the early universe had both baryons (an elementary particle made up of three quarks) and antibaryons (the mirror image of the baryons). At this point, the universe underwent baryogenesis. Baryogenesis is a generic term for theoretical physical processes that produce an asymmetry (inequality) between matter and antimatter. The asymmetry, per the baryogenesis theories, resulted in significant amounts of residual matter, as opposed to antimatter. The major differences between the various baryogenesis theories are in the details of the interactions between elementary particles. Baryogenesis essentially boils down to the creation of more matter than antimatter. In other words, it requires the physical laws of the universe to become asymmetrical. We need to understand what this means.

The symmetry of physical laws is widely accepted by the scientific community. What does “symmetry” mean in this context?

  • First, it means that the physical laws do not change with time. If a physical law is valid today, it continues to be valid tomorrow, and any time in the future. This is a way of saying that a time translation of a physical law will not affect its validity.
  • Second, it means that the physical laws do not change with distance. If the physical law is valid on one side of the room, it is valid on the other side of the room. Therefore, any space translation of a physical law will not affect its validity.
  • Lastly, it means that the physical laws do not change with rotation. For example, the gravitational attraction between two masses does not change when the masses rotate in space, as long as the distance between them remains fixed. Therefore, any rotational translation of a physical law will not affect its validity.

This is what we mean by the symmetry of physical laws.

Next, we will address the asymmetry of physical laws. In this context, “asymmetry” means that the symmetry of physical laws no longer applies. For example, a law of physics may be valid in a specific location, but not in another, when both locations are equivalent. Is this possible? Maybe. There has been experimental evidence that the asymmetry is possible (a violation of the fundamental symmetry of physical laws). For example, radioactive decay and high-energy particle accelerators have provided evidence that asymmetry is possible. However, the evidence is far from conclusive. Most importantly, it does not fully explain the magnitude of the resulting matter of the universe.

This casts serious doubt on the baryogenesis theories. In addition, the baryogenesis theories appear biased by our knowledge of the outcome. By making certain (questionable) assumptions, and using various scientific disciplines, they result in the answer we already know to be true. The universe consists of matter, not antimatter. Therefore, baryogenesis theories may not be an objective explanation.

Obviously, the absence of antimatter is a profound mystery of science. Future work at the Large Hadron Collider may help us resolve this mystery. Based on their current findings, we are close, but do not have the total answer yet. If there are any breakthroughs, I will post them.

 

 

Close-up of a fingerprint being examined under a magnifying glass with a blue-toned background.

The Top Five Unsolved Mysteries of Science

There are numerous unsolved mysteries in science. In this post, I will delineate the top five that I consider the most profound.

  1. What caused the Big Bang? Cosmologist are in strong consensus that the Big Bang resulted in the evolution of the Universe, but there is no scientific consensus as to what caused the Big Bang. There are several theories, including one that I put forward in my book, Unraveling the Universe’s Mysteries. However, none of the current theories, including the one that I forward in my book, have garnered consensus in the scientific community. The origin of the Big Bang is arguably the greatest scientific mystery of all time, and it remains an area of considerable research.
  2. How did life start on Earth? There are two fundamental theories regarding the origin of life on Earth. The first theory, panspermia, holds that life exists throughout the Universe and is distributed by meteoroids, asteroids and planetoids. This theory is compelling, but it still leaves us with another profound question, “How did life originate in the Universe?” There are no widely accepted theories to address that question. The second theory, regarding how life started on Earth, is termed biopoesis. It holds that life forms from inorganic matter through natural processes. This theory is also compelling, but no experimental process has resulted in life forming from inorganic matter. By simple logic, one or even both of these theories is correct. Obviously, in the early Universe, life had to form from inorganic matter. It is also possible that life also started on Earth via the same process. It is also possible that once life formed in the Universe, it was spread by meteoroids, asteroids and planetoids.
  3. What is the nature of time? Some scientists, myself included, argue time is real. This stance suggests that time travel would also be possible. In my book, How to Time Travel, I devote considerable attention to the various philosophies of time and to experiments that suggest time is real. I also delineate experiments that prove time travel to the future is real, as well as experiments that prove reverse causality is real (i.e., literally, the effect precedes the cause). I also delineate experiments that prove that something in the future can alter the past. Some philosophers and scientists argue that time is a mental construct. It is not real. That humans invented time to measure change. If that is true, time travel would not be possible, except in your mind. However, scientific experiments, such as time dilation and reverse causality suggest otherwise. What do you think?
  4. What is the fundamental theory of physics? Modern physics rests on two pillars, The first pillar is Einstein’s theories of relativity. The second pillar is quantum mechanics. Although Einstein’s theories explain phenomena on the macro-scale (i.e., the typical scale we observe in our every day life), it fails to explain phenomena on the quantum level (i.e., the level of atoms and subatomic particles). To explain phenomena on the quantum level we must turn to quantum mechanics. This would be acceptable, except Einstein’s theories of relativity are incompatible with quantum mechanics. They do not come together to adequately explain gravity. Physicists have long sought the “theory of everything.” Some physicists, like world renown cosmologist Stephen Hawking, suggest that M-theory (i.e., the most comprehensive string theory) fits the bill. However, there is no consensus or proof that M-theory is even valid. Until the next Einstein comes along and solves the problem, we don’t have a fundamental theory (i.e., a single unifying theory) of physics.
  5. Does life exist on other planets or is the Earth unique? Almost every scientist agrees that given the vastness of the Universe and the numerous Earth-like planets that have been discovered, there must be life somewhere else in the Universe. Indeed, many believe, myself included, that advanced aliens, similar or more advanced than ourselves, must also exist. However, there has been no definitive publication that proves life exists elsewhere in the Universe. I will refrain from getting into UFOs, government conspiracies and similar material. I don’t refute such theories, but as a scientist I must base my conclusions on definitive evidence. To date, we have no definitive evidence (i.e., widely accepted by the scientific community) regarding life on other planets. However, mathematically, I think life on other planets is a certainty. What do you think?
A black and white image of a clock face with a spiral effect distorting the numbers and hands.

Reverse Causality – The Future Can Change the Past

Most people find reverse causality intriguing, but impossible. Yet, it has a strong basis in science. In my book, How to Time Travel, I discuss a number of reverse causality examples. Here are some from the book.

Twisting the Arrow of Time

The flow of time, sometimes referred to as the “arrow of time,” is a source of debate, especially among physicists. Most physicists argue that time can only move in one direction based on “causality” (i.e., the relationship between cause and effect). The causality argument goes something like this: every event in the future is the result of some cause, another event, in the past. This appears to make perfect sense, and it squares with our everyday experience. However, experiments within the last several years appear to argue reverse causality is possible. Reverse causality means the future can and does influence the past. For example, in reverse causality, the outcome of an experiment is determined by something that occurs after the experiment is done. The future is somehow able to reach into the past and affect it. Are you skeptical? Skepticism is healthy, especially in science. Let us discuss this reverse causality experiment.

In 2009, physicist John Howell of the University of Rochester and his colleagues devised an experiment that involved passing a laser beam through a prism. The experiment also involved a mirror that moved in extremely small increments via its attachment to a motor. When the laser beam was turned on, part of the beam passed through the prism, and part of the beam bounced off the mirror. After the beam was reflected by the mirror, the Howell team used “weak measurements” (i.e., measurement where the measured system is weakly affected by the measurement device) to measure the angle of deflection. With these measurements, the team was able to determine how much the mirror had moved. This part of the experiment is normal, and in no way suggests reverse causality. However, the Howell team took it to the next level, and this changed history, literally. Here is what they did. They set up two gates to make the reflected mirror measurements. After passing the beam through the first gate, the experimenters always made a measurement. After passing it through the second gate, the experimenters measured the beam only a portion of the time. If they chose not to make the measurement at the second gate, the amplitude of the deflected angle initially measured at the first gate was extremely small. If they chose to make the measurement at the second gate, the deflected angle initially measured at the first gate was amplified by a factor of 100. Somehow, the future measurement influenced the amplitude of the initial measurement. Your first instinct may be to consider this an experimental fluke, but it is not. Physicists Onur Hosten and Paul Kwiat, University of Illinois at Urbana-Champaign, using a beam of polarized light, repeated the experiment. Their results indicated an even larger amplification factor, in the order of 10,000.

The Double-Slit Experiment

There are numerous versions of the double-slit experiment. In its classic version, a coherent light source, for example a laser, illuminates a thin plate containing two open parallel slits. The light passing through the slits causes a series of light and dark bands on a screen behind the thin plate. The brightest bands are at the center, and the bands become dimmer the farther they are from the center.

The series of light and dark bands on the screen would not occur if light were only a particle. If light consisted of only particles, we would expect to see only two slits of light on the screen, and the two slits of light would replicate the slits in the thin plate. Instead, we see a series of light and dark patterns, with the brightest band of light in the center, and tapering to the dimmest bands of light at either side of the center. This is an interference pattern and suggests that light exhibits the properties of a wave, which is well accepted in the scientific community. This is termed the dual nature of light. This portion of the double-slit experiment simply exhibits the wave nature of light.

The above double-slit experiment demonstrates only one element of the paradoxical nature of light, the wave properties. The next part of the double-slit experiment continues to puzzle scientists. There are five aspects to the next part.

1. Both individual photons of light and individual atoms have been projected at the slits one at a time. This means that one photon or one atom is projected, like a bullet from a gun, toward the slits. Surely, our judgment would suggest that we would only get two slits of light or atoms at the screen behind the slits. However, we still get an interference pattern, a series of light and dark lines, similar to the interference pattern described above. Two inferences are possible:

a. The individual photon light acted as a wave and went through both slits, interfering with itself to cause an interference pattern.
b. Atoms also exhibit a wave-particle duality, similar to light, and act similarly to the behavior of an individual photon light described (in part a) above.

2. Scientists have placed detectors in close proximity to the screen to observe what is happening, and they find something even stranger occurs. The interference pattern disappears, and only two slits of light or atoms appear on the screen. What causes this? Quantum physicists argue that as soon as we attempt to observe the wavefunction of the photon or atom, it collapses. Please note, in quantum mechanics, the wavefunction describes the propagation of the wave associated with any particle or group of particles. When the wavefunction collapses, the photon acts only as a particle.

3. If the detector (in number 2 immediately above) stays in place but is turned off (i.e., no observation or recording of data occurs), the interference pattern returns and is observed on the screen. We have no way of explaining how the photons or atoms know the detector is off, but somehow they know. This is part of the puzzling aspect of the double-slit experiment. This also appears to support the arguments of quantum physicists, namely, that observing the wavefunction will cause it to collapse.

4. The quantum eraser experiment—Quantum physicists argue the double-slit experiment demonstrates another unusual property of quantum mechanics, namely, an effect termed the quantum eraser experiment. Essentially, it has two parts:

a. Detectors record the path of a photon regarding which slit it goes through. As described above, the act of measuring “which path” destroys the interference pattern.
b. If the “which path” information is erased, the interference pattern returns. It does not matter in which order the “which path” information is erased. It can be erased before or after the detection of the photons.

This appears to support the wavefunction collapse theory, namely, observing the photon causes its wavefunction to collapse and assume a single value.

5. If the detector replaces the screen and only views the atoms or photons after they have passed through the slits, once again, the interference pattern vanishes and we get only two slits of light or atoms. How can we explain this? In 1978, American theoretical physicist John Wheeler (1911–2008) proposed that observing the photon or atom after it passes through the slit would ultimately determine if the photon or atom acts like a wave or particle. If you attempt to observe the photon or atom, or in any way collect data regarding either one’s behavior, the interference pattern vanishes, and you only get two slits of photons or atoms. In 1984, Carroll Alley, Oleg Jakubowicz, and William Wickes proved this experimentally at the University of Maryland. This is the “delayed-choice experiment.” Somehow, in measuring the future state of the photon, the results were able to influence their behavior at the slits. In effect, we are twisting the arrow of time, causing the future to influence the past. Numerous additional experiments confirm this result.

Let us pause here and be perfectly clear. Measuring the future state of the photon after it has gone through the slits causes the interference pattern to vanish. Somehow, a measurement in the future is able to reach back into the past and cause the photons to behave differently. In this case, the measurement of the photon causes its wave nature to vanish (i.e., collapse) even after it has gone through the slit. The photon now acts like a particle, not a wave. This paradox is clear evidence that a future action can reach back and change the past.

Summary

The above experimental results raise questions about the “arrow of time.” It appears that under certain circumstances, the arrow of time can point in either direction, and time can flow in either direction, forward or backward. This is a scientific result. It may be hard to believe, but the above experiments have been repeated. In the case of the double-slit experiment, it has been repeated numerous times. No one has been able to provide a widely accepted explanation. Reverse causality is a true mystery of science.

 

A colorful simulation of cosmic web structure showing galaxies and dark matter distribution in the universe.

A Vacuum is Filled with Energy

Most people think that a vacuum is empty, but it is not. It is filled with energy. This may be hard to believe, but it is a scientific fact.

According to Paul Dirac, a British physicist and Nobel Prize Laureate, who first postulated virtual particles, empty space (a vacuum) consists of a sea of virtual electron-positron pairs, known as the Dirac sea. This is not a historical footnote. Modern-day physicists, familiar with the Dirac-sea theory of virtual particles, claim there is no such thing as empty space. They argue it contains virtual particles.

This raises yet another question. What is a positron? A positron is the mirror image of an electron. It has the same mass as an electron, but the opposite charge. The electron is negatively charged, and the positron is positively charged. If we consider the electron matter, the positron is antimatter. For his theoretical work in this area, science recognizes Paul Dirac for discovering the “antiparticle.” Positrons and antiparticles are all considered antimatter.

Virtual particle-antiparticle pairs pop into existence in empty space for brief periods, in agreement with the Heisenberg uncertainty principle, which gives rise to quantum fluctuations. Let’s understand these points.

  • What is the Heisenberg uncertainty principle? The Heisenberg uncertainty principle embodies the statistical nature of energy at the quantum level, which implies that energy at the quantum level can vary. Another way to say this is to state the Heisenberg uncertainty principle gives rise to quantum fluctuations.
  • What is a quantum fluctuation? It is a theory in quantum mechanics that argues there are certain conditions where a point in space can experience a temporary change in energy. Again, this is in accordance with the statistical nature of energy implied by the Heisenberg uncertainty principle. This temporary change in energy gives rise to virtual particles. This may appear to violate the conservation of energy law, arguably the most revered law in physics. It appears that we are getting something from nothing. However, if the virtual particles appear as a matter-antimatter pair, the system remains energy neutral. Therefore, the net increase in the energy of the system is zero, which would argue that the conservation of energy law remains in force.

No consensus exists that virtual particles always appear as a matter-antimatter pair. However, this view is commonly held in quantum mechanics, and this creation state of virtual particles maintains the conservation of energy. Therefore, it is consistent with Occam’s razor, which states that the simplest explanation is the most plausible one, until new data to the contrary becomes available. The lack of consensus about the exact nature of virtual particles arises because we cannot measure them directly. We detect their effects, and infer their existence. For example, they produce the Lamb shift, which is a small difference in energy between two energy levels of the hydrogen atom in a vacuum. They produce the Casimir-Polder force, which is an attraction between a pair of electrically neutral metal plates in a vacuum. These are two well-known effects caused by virtual particles. A laundry list of effects demonstrates that virtual particles are real.

Therefore, a vacuum is not empty. It is filled with energy.