Category Archives: Physics

Nature of Light

Do We Live In A Quantum Universe? – Part 1/3

The notion that all reality (mass, space, time, and energy) consists of discrete energy quantums is counterintuitive. For example, an electric current consists of individual electrons flowing in a wire. However, you do not notice your television flickering as the electrons move through the circuits. The light you read by consists of individual photons. Yet, your eyes do not sense individual photons reflected from the page. The point is that our senses perceive reality as a continuum, but this perception is an illusion. In the following, we will examine each element of reality one by one to understand its true nature. In this post, “Do We Live In A Quantum Universe? – Part 1/3,” we will start by exploring the qunatized nature of mass.

Mass—the sum of all its atoms.

We will start with mass. Any mass is nothing more than the sum of all its atoms. The atoms themselves consist of subatomic particles like electrons, protons, and neutrons, which consist of even more elementary particles, like quarks. (Quarks are considered the most elementary particles. I will not describe the six different types of quarks in detail, since it will unnecessary complicate this discussion.) The point is any mass reduces to atoms, which further reduces to subatomic particles. The atom is a symphony of these particles, embodying the fundamental forces (strong nuclear, weak nuclear, electromagnet, and gravity). Does all this consist of energy quantums? In the final analysis, it appears it does, including the fundamental forces themselves. How can this be true?

In the early part of the Twentieth Century, the theory of quantum mechanics was developed. It is able to predict and explain phenomena at the atomic and subatomic level, and generally views matter and energy as quantized (discrete particles or packets of energy). Quantum mechanics is one of modern science’s most successful theories. At the macro level, which is our everyday world, any mass is conceivably reducible to atoms, subatomic particles, and fundamental forces.

Science holds that the fundamental forces (strong nuclear, weak nuclear, electromagnet, and gravity) mediate (interact) via particles. For example, the electromagnetic force mediates via photons. We have verified the particle for all the fundamental forces, except gravity. A number of theoretical physicists believe a particle is associated with gravity, namely the graviton. The graviton is a hypothetical elementary massless particle that theoretical physicists believe is responsible for the effects of gravity. The problem is that all efforts to find the graviton have failed. This is an active area of research, and work continues to find the graviton, and to develop a quantum gravity theory. If we assume gravity mediates through a particle, the case is easily made via Einstein’s mass-energy equivalence equations (E = mc2) that all mass, as well as the fundamental forces, reduces to energy quantums.

Although, we are unable to prove conclusively that all masses, including the fundamental forces, consists of discrete energy packets, numerous scientists believe they are. This realization caused Albert Einstein great distress. He wrote in 1954, one year prior to his death, “I consider it quite possible that physics cannot be based on the field concept, i.e., on continuous structures. In that case, nothing remains of my entire castle in the air, gravitation theory included, [and of] the rest of modern physics.” Einstein, who grew up in the world of classical physics, was a product of his time. Classical physics utilizes the concept of fields to explain physical behavior. The fields of classical physics are a type of invisible force that influences physical behavior. For example, classical physics explains the repulsion of two positively charged particles due to an invisible repulsive field between them. Modern physics explains this repulsion due to the mediation of photons, which act as force carriers. The main point is that mass and the fundamental forces are ultimately reducible to discrete elements, which equate to discrete packets of energy (quantums).

In the next post, “Do We Live In A Quantum Universe? – Part 2/3,” we will explore the nature of space. We will address the question: Is space quantized?

Source: Unraveling the Universe’s Mysteries (2013), Louis A. Del Monte

Image: iStockPhoto (licensed)

Abstract digital art featuring a radiant white light at the center surrounded by intricate geometric patterns and electric green lines.

The Mysterious Nature of Energy

We scientists talk about energy, and derive equations with energy mathematically expressed in the equation as though we understand energy. The fact is: we do not. It is an indirectly observed quantity. We infer its existence. For example, in physics, we define energy as the ability of a physical system to do work on another physical system. Physics is one context that uses and defines the word energy. However, the word energy has different meanings in different contexts. Even the average person throws the term energy around in phrases like, “I don’t have any energy today,” generally inferring a lack of vigor, force, potency, zeal, push, and the like. The word energy finds its way into both the scientific community and our everyday communications, but the true essence of energy remains an enigma.

The concept of energy is an old concept. It comes from the ancient Greek word, “enérgeia,” which translates “activity or operation.” As previously stated, we do not know the exact essence of energy, but we know a great deal about the effects of energy. To approach a better understanding, consider these four fundamental properties of energy:

1. Energy is transferable from one system to another.

Transferring mass between systems results in a transfer of energy between systems. Mass and energy have been inseparably equated, since 1905, via Einstein’s famous mass–energy equivalence equation, E = mc2, where E is energy, m is mass, and c is the speed of light in a vacuum. This equation is widely held as a scientific fact. Experimental results over the last century strongly validate it. Typically, mass transfers between systems occur at the atomic level as atoms capture subatomic particles or bond to form products of different masses.

Non-matter transfer of energy is possible. For example, a system can transfer energy to another by thermal radiation (heat). The system that absorbs the thermal radiation experiences an increase in energy, typically measured by its temperature. This is how the radiators in a house raise the room temperature. Here is another example: If an object in motion strikes another object, a transfer of kinetic energy results. Consider billiard balls. When one ball strikes another, it imparts kinetic energy to the ball it strikes, causing it to move.

2.  Energy may be stored in systems.

If you pick up a rock from the ground and hold it at shoulder height, you have stored energy between the rock and ground via the gravitation attraction created between the Earth and rock. You may consider this potential energy. When you open your hand, the rock will fall back to the ground. Why? The answer is straightforward. It required your energy to hold the rock in its new position at shoulder height. As soon as you, by opening your hand, released the energy that you were providing, it reduced to a lower energy state when the gravitational field pulled the rock back to the ground.

Any type of energy that is stored is “potential energy,” and all types of potential energy appear as system mass. For example, a compressed metal spring will be slightly more massive than before it was compressed. When you compress the spring, you do work on the system. The work on the system is energy, and that energy is stored in the compressed spring as potential energy. Because of this stored potential energy, the spring becomes more massive.

3. Energy is not only transferable–it is transformable from one form to another.

Our example regarding the rock falling back to the ground is an example of energy transformation. The potential energy was transformed to kinetic energy when you opened your hand and released the rock. This is what caused the rock to fall back to the ground. Here is an industrial example. Hydroelectric plants generate electricity by using water that flows over a falls due to gravity. In effect, they are transforming the falling water (gravitational energy) into another form of energy (electricity).

4. Energy is conserved.

This is arguably the most sacred law in physics. Simply stated: Energy cannot be created or destroyed in an isolated system. The word “isolated” implies the system does not allow other systems to interact with it. A thermos bottle is an example of an isolated system. It is preventing the ambient temperature from changing the temperature inside the thermos. For example, it keeps your coffee hot for a long time. Obviously, it is not a perfectly isolated system since eventually it will lose heat to the atmosphere, and your coffee will cool to the ambient temperature that surrounds the thermos bottle. For example, in your house, the coffee in a cup will cool to room temperature.

In summary, energy may be transferred, stored, and transformed, but it cannot be created or destroyed in an isolated system. This means the total energy of an isolated system does not change.

Next, we will consider energy in different contexts. Unfortunately, since we do not know the true essence of energy, we need to describe it via the effects we observe in the context that we observe them. Here are two contexts:

1)   Cosmology and Astronomy

Stars, nova, supernova, quasar, and gamma-ray bursts are the highest-output mass into energy transformations in the universe. For example, a star is typically a large and massive celestial body, primarily composed of hydrogen. Due to its size, gravity at the star’s core is immense. The immense gravity causes the hydrogen atoms to fuse together to form helium, which causes a nuclear reaction to occur. The nuclear reaction, in effect, transforms mass into energy. In the cosmos, mass-to-energy transformations are due to gravity, and follow Einstein famous equation, E = mc2 (discussed previously). The gravity can result in nuclear fusion, as described in the above example. It can cause a dying star to collapse and form a black hole.

2) Chemistry

Energy is an attribute of the atomic or molecular structure of a substance. For example, an atom or molecule has mass. From Einstein’s mass-energy equivalence equation, (E = mc2), we know the mass equates to energy. In chemistry, an energy transformation is a chemical reaction. The chemical reaction typically results in a structural change of the substance, accompanied by a change in energy. For example, when two hydrogen atoms bond with one oxygen atom, to form a water molecule, energy emits in the form of light.

Other scientific contexts give meaning to the word energy. Two examples are biology and geology. Numerous forms of energy are accepted by the scientific community. The various forms include thermal energy, chemical energy, electric energy, radiant energy, nuclear energy, magnetic energy, elastic energy, sound energy, mechanical energy, luminous energy, and mass. I will not go into each form and context for the sake of brevity. My intent is to illustrate that the word energy in science must be understood within a specific context and form.

As mentioned above, we truly do not know the essence of energy; we infer its existence by its effects. The effects we measure often involve utilizing fundamental concepts of science, such as mass, distance, radiation, temperature, time, and electric charge. Adding to ambiguity, energy is often confused with power. Although we often equate “power” and “energy” in our everyday conversation, scientifically they are not the same. Strictly speaking, in science, power is the rate at which energy is transferred, used, or transformed. For example, a 100-watt light bulb transforms more electricity into light than a 60-watt light bulb. In this example, the electricity is the energy source. Its rate of use in the light bulbs is power. It takes more power to run a 100-watt bulb than a 60-watt bulb. Your electric bill will verify this is true.

What is it about energy that makes it mysterious? Science does not understand the nature of energy. We have learned a great deal about energy in the last century. The word energy has found its way into numerous scientific contexts as well as into our everyday vernacular, but we do not know the fundamental essence of energy. We can infer it exists. Its existence and definition is context sensitive. We do not have any instrument to measure energy directly, independent of the context. Yet, in the last century, we have learned to harness energy in various forms. We use electrical energy to power numerous everyday items, such as computers and televisions. We have learned to unleash the energy of the atom in nuclear reactors to power, for example, cities and submarines. We have come a long way, but the fundamental essence of energy remains an enigma.

In the next post, we will discuss another aspect of energy that haunts the scientific community. Does all reality consist of discrete packets (quantums) of energy? Are mass, space, time, and energy composed of quantized energy? We can make a reasonably strong case that they are. It is counterintuitive because we do not experience reality that way. For example, when you pick up a rock, you do not directly experience the atoms that make up the rock. However, the rock is nothing more than the sum of all its atoms. If all reality is made of quantized energy, we live in a Quantum Universe. What exactly is a Quantum Universe? Stay tuned, and we will explore what a Quantum Universe is in the next post.

Source: Unraveling the Universe’s Mysteries (20120, Louis A. Del Monte

Abstract fractal pattern resembling a cosmic or underwater scene with glowing blue and white textures.

Do We Need M-Theory? Maybe!

Most high school science classes teach the classical view of the atom, incorporating subatomic particles like protons, electrons, and neutrons. This is the particle theory of the atom dating to the early Twentieth Century. In about the 1960s, scientists discovered more subatomic particles. By the 1970s, scientists discovered that protons and neutrons consist of subatomic particles called quarks (an elementary particle not known to have a substructure). In the 1980s, a mathematical model called string theory, was developed. It is a branch of theoretical physics. String theory sought to explain how to construct all particles and energy in the universe via hypothetical one-dimensional “strings.” Subatomic particles are no longer extremely small masses. Instead, they are oscillating lines of energy, hence the name “strings.” In addition, the latest string theory (M-theory) asserts that the universe is eleven dimensions, not the four-spacetime dimensions we currently experience in our daily lives. String theory was one of science’s first attempts at a theory of everything (a complete mathematical model that describes all fundamental forces and matter).

In about the mid-1990s, scientists considered the equivalences of the various string theories, and the five leading string theories were combined into a one comprehensive theory, M-theory. M-theory postulates eleven dimensions of space filled with membranes, existing in the Bulk (super-universe). The Bulk contains an infinite number of membranes, or “branes” for short.

According to M-theory, when two branes collide, they form a universe. The collision is what we observed as the Big Bang when our universe formed. From that standpoint, universes continually form via other Big Bangs (collisions of branes).

Does this explain the true origin of the energy? No! It still begs the question: where does the energy come from to create the membranes? The even-bigger question: is there any scientific proof of the multiverse? Recently, several scientists claim unusual ring patterns on the cosmic microwave background might be the result of other universes colliding with ours. However, even the scientists forwarding this theory suggest caution. It is speculative. At this point, we must admit no conclusive evidence of a multiverse exists. In fact, numerous problems with the multiverse theories are known. This does not mean there are no multiverses. Currently, though, we have no conclusive experimental proof, but do have numerous unanswered questions.

All multiverse theories share three significant problems.

1) None of the multiverse theories explains the origin of the initial energy to form the universe. They, in effect, sidestep the question entirely.

2) No conclusive experimental evidence proves that multiverses exist. This is not to say that they do not exist. It just means we cannot prove they exist.

3) Critics argue it is poor science. We are postulating universes we cannot see or measure in order to explain the universe we can see and measure.

However, in the last hundred years, we have made discoveries, and experimentally verified phenomena that in prior centuries would have been considered science fiction, metaphysics, magic, and unbelievable. We discovered numerous secrets of the universe, once believed to be only the Milky Way galaxy—to now being an uncountable number of galaxies in a space that is expanding exponentially. We also unlocked the secrets of the atom, once believed to be the fundamental building block of matter (from the Greek atomos “uncut”). Currently, we understand the atom consists of electrons, protons, and neutrons, which themselves consist of subatomic particles like quarks. The list of discoveries that have transformed our understanding of reality over the last century is endless. From my perspective, skepticism can be healthy. However, one cannot be entirely closed-minded when it comes to exploring the boundaries of science.

This brings us to the crucial question: Do we need M-Theory? My answer is: Maybe! Right now, it’s the only “mainstream” game in town. It has numerous respected proponents, including world-renowned cosmologist/physicist Stephen Hawking. However, the “mainstream” has been wrong before, and we are in uncharted waters. It may be right, and the mathematics is elegant. The only thing missing is experimental evidence (i.e., proof). On this one, you’ll have to weigh the facts and draw your own conclusion.

Source: Unraveling the Universe’s Mysteries (2012), Louis A. Del Monte

Image: iStockPhoto (licensed)

 

 

A silhouette of a person with a clock face behind them, symbolizing the concept of time and human existence.

The Greatest Engineering Challenge to Time Travel

Without doubt, harnessing sufficient energy is  the largest obstacle to time travel. For example, time dilation (i.e., forward time travel) is only noticeable when mass approaches a significant fraction of the speed of light or sits in a strong gravitational field. To date, we have been able to accelerate subatomic particles to a point where time dilation becomes noticeable. We have also been able to observe time dilation of a highly accurate atomic clock on a jet plane as it flies over the airport, which contains another atomic clock. Using sensitive instruments, we can measure time dilation. We have also been able to measure time dilation due to differences in the Earth’s gravitational field. However, these differences are only evident using highly accurate atomic clocks. Our human senses are unable to detect a high mounted wall clock moving faster than our wristwatch, which gravitational time dilation predicts is occurring.

The fastest humankind has traveled is 25,000 miles per hour, using the Apollo 10 spacecraft. The speed of light in a vacuum is approximately 186,000 miles per second. This means that a spacecraft would have to go about 13,000 times faster than Apollo 10 for humans to experience noticeable time dilation, or a speed of about 90,000 miles per second, which is roughly half the speed of light. Today’s science has not learned to harness the amount of energy required to accelerate a spacecraft to a velocity of 90,000 miles per second.

Let us consider a simple example to illustrate the amount of energy required to achieve the above velocity. If we have a mass of 1000 kilograms (i.e., 2204 pounds), and we want to accelerate it to 10% the speed of light, the resulting kinetic energy would be about 1017 (i.e., a 1 with 17 zeros after it) joules, whether you calculate the kinetic energy using Newton’s classical formula or Einstein’s relativistic formula for kinetic energy. To put this in perspective, it is more than twice the amount of energy of the largest nuclear bomb ever detonated. It would take a modern nuclear power plant about ten years to output this amount of energy.

The above example gives us a conceptual framework to understand the amount of energy that would be required to accelerate a sizable mass, 1000 kilograms, or 2204 pounds, to just 10% the speed of light. If we wish to accelerate the mass, for example, a spacecraft, to a greater percentage, the energy increases exponentially. For example, to accelerate to 20% the speed of light would require four times the amount of energy.

Today’s engineering is unable to harness this level of energy. In the popular Star Trek television series and movies, the starship Enterprise is able to travel faster than the speed of light using a warp drive, by reacting matter with antimatter. Factually, there is almost no antimatter in the universe. This is one of the mysteries associated with the big bang science theory, which I discussed in my book, Unraveling the Universe’s Mysteries. In theory, during the big bang, matter and antimatter should exist in equal quantities. Our observation of the universe, using our best telescopes, detects almost no antimatter. However, Fermi National Accelerator Laboratory (Fermilab) in Illinois is able to produce about fifty billion antiprotons per hour. This, though, is a miniscule amount compared to the amount needed to power a starship. According to Dr. Lawrence Krauss, a physicist and author of The Physics of Star Trek, it would take one hundred thousand Fermilabs to power a single lightbulb. In essence, we are a long way from using matter-antimatter as a fuel. In addition, the Enterprise was able to warp space. This provided a means to skirt around Einstein’s well-established special theory of relativity, which asserts no mass can travel faster than the speed of light. There is no similar physical law that prohibits space from expanding faster than the speed of light. If we are able to manipulate space, similar to our discussion of the Alcubierre drive in the previous chapter, then scientifically the spacecraft could collapse space in front of it and expand space behind it. However, the Alcubierre drive requires negative energy. Today’s science is unable to create and harness negative energy in any significant way.

Therefore, topping our list of major scientific obstacles regarding time travel is generating huge amounts of energy, in either positive or negative form.

Source: How to Time Travel (2013), Louis A. Del Monte

M-theory

Are There Any Real Time Machines? Part 2/2 (Conclusion)

Are there any real time machines?

In my opinion, we are in about the same place space travel was at the beginning of the twentieth century. At the beginning of the twentieth century, all we knew about space travel came from science fiction. We knew that birds could fly, and this observation provided hope that human air flight would eventually be possible. However, at this point we could only fly using balloons, which was a long way from controlled air flight. We knew about projectiles, such as cannonballs and simple rockets, and this provided hope that one day humankind would be able to travel into space. However, at the beginning of the twentieth century we were still three years away from building the first successful airplane. The first successful airplane did not come from a well-respected theory or formal scientific investigation. Most early attempts at air flight tended to focus on building powerful engines, or they attempted to imitate birds. The early attempts at air flight were dismal failures. The first successful heavier-than-air machine, the airplane, was invented in 1903 by two brothers, Orville and Wilbur Wright. They were not scientists, nor did they publish a scholarly paper in a scientific journal delineating their plans. Quite the contrary, the two brothers had a background in printing presses, bicycles, motors, and other machinery. Clearly, their background would not suggest they would invent the first airplane and lead humankind into space. However, their experience in machinery enabled them to build a small wind tunnel and collect the data necessary to sustain controlled air flight. From the beginning, the Wright brothers believed that the solution to controlled air flight lay hidden in pilot controls, rather than powerful engines. Based on their wind tunnel work, they invented what is now the standard method of all airplane controls, the three-axis control. They also invented efficient wing and propeller designs. It is likely that many in the scientific community in the beginning of the twentieth century would have considered aeronautics similar to the way the scientific community in the early part of the twenty-first century considers time travel—still something outside the fold of legitimate science. However, on December 17, 1903, at a small, remote airfield in Kitty Hawk, North Carolina, the two brothers made the first controlled, powered, and sustained heavier-than-air human flight. They invented the airplane. It was, of course, humankind’s first step into the heavens.

I believe the invention of the airplane is a good analogy to where we are regarding time travel. We have some examples, namely, time dilation data, and a theoretical basis that suggests time travel is potentially real. However, we have not reached the “Kitty Hawk” moment. If Dr. Mallett makes his time machine work, and that is a big “if,” numerous physicists will provide the theoretical foundation for its success, essentially erasing any errors that Dr. Mallett may have made in his calculations. He will walk as another great into the history of scientific achievement.

My point is a simple one. The line between scientific genius and scientific “crank” is a fine one. When Einstein initially introduced his special theory of relativity in 1905, he was either criticized or ignored. Few in the scientific community appreciated and understood Einstein’s special theory of relativity in 1905. It took about fifteen years for the scientific community to begin to accept it. Einstein was aware of the atmosphere that surrounded him. In 1919, he stated in the Times of London, “By an application of the theory of relativity to the taste of readers, today in Germany I am called a German man of science, and in England I am represented as a Swiss Jew. If I come to be represented as a bête noire, the descriptions will be reversed, and I shall become a Swiss Jew for the Germans and a German man of science for the English!”

Dr. Mallett is on record predicting a breakthrough in backward time travel within a decade. Only time and experimental evidence will prove if his prediction becomes reality. Even if the Mallett time machine works, it would still represent only a baby step. We would still be a long way from human time travel, but we would be one step closer.

Source: How to Time Travel (2013), Louis A. Del Monte