Category Archives: Multiverse

Abstract cosmic scene with transparent spheres floating against a colorful galaxy backdrop.

Is the Universe Finite or Infinite?

The universe we can see and measure is about 13.8 billion years old. However, the universe is larger than 13.8 billion light years in diameter due to the expansion and subsequent inflation of space, in accordance with the Big Bang theory. In fact, our best current estimate, taking expansion and inflation of space into account, puts the edge of the observable universe at about 46–47 billion light-years away from Earth. This “edge” would represent our current cosmological horizon.

If you assume that the universe is infinite, then logically it would extend beyond the current cosmological horizon. Scientists have termed this infinite universe a “super-universe.” If the infinite universe theory is correct, our universe may be one universe out of uncountable billions in the super-universe. We cannot see the other universes because our current observation technology is unable to look through the cosmic microwave-background radiation, which originated when the matter in the universe was plasma (hot, ionized gas), and thus opaque. In theory, if we develop more advanced observation technology, such as a neutrino telescope (one capable of detecting neutrinos) or even a gravitational telescope (one capable of detecting the yet-undiscovered gravitation particle called a “graviton”), we would be able to look beyond the cosmic microwave-background radiation and see older events. We would have a new cosmological horizon, but we would never be able to examine the “edge” of an infinite universe. Why? It has no edge—and advances in cosmic observation technology will not matter. Even the hypothetical graviton (the theoretical particle of gravity), traveling at the speed of light, would never reach us from an infinitely distant universe.

Why is an infinite universe even plausible? We know from actual observations that the universe’s expansion is accelerating. The farther out our instruments allow us to observe, we can measure that the expansion is accelerating, and even exceeding the speed of light. The accelerating expansion is termed “inflation,” and was confirmed in the late 1990s. Until inflation’s confirmation, scientists believed that gravity would eventually slow the universe’s expansion, and even eventually cause the universe to contract in a “Big Crunch,” since gravity causes everything to pull on everything.

Long before we had any observable proof of the universe’s inflationary expansion, two scientists independently postulated its existence in 1979. Unfortunately, one scientist, Alexei Starobinsky of the L.D. Landau Institute of Theoretical Physics in Moscow, was unable to communicate his work to the worldwide scientific community due to the political policies of the former Soviet Union. Fortunately, the other scientist, Alan Guth, Professor of Physics at the Massachusetts Institute of Technology, developed an inflationary model independently, and communicated it worldwide. Guth’s model, however, was not able to reconcile itself with the isotropic, homogeneous universe we observe today. In other words, to the best of our current ability to measure it, the universe essentially looks the same in every direction. Andrei Linde, Russian-American theoretical physicist and Professor of Physics at Stanford University, solved Guth’s theoretical dilemma in 1986. Linde published an alternative model entitled “Eternally Existing Self-Reproducing Chaotic Inflationary Universe” (known as “Chaotic Inflation theory”). In Linde’s model, our universe is one of countless others. A prediction of the chaotic inflation theory is an infinite universe with bubble universes within it. Would they be the same as our universe? No one knows. Perhaps one or more universes would be different from ours. However, being infinite, an infinite number of universes would be identical to ours, even down to the last atom, obeying the same physical laws.

The concept of an infinite universe would also imply an infinite number of us (you, me, and everyone else) are out there somewhere beyond the cosmic horizon. Given an infinite number of us, we are living out every possible scenario. This is difficult to comprehend because infinite numbers cannot be comprehended. Here is a simple way to think about this. If you play poker, what are the odds that you will be dealt a royal flush (Ace, King, Queen, Jack, Ten, all in the same suit) in the first five cards? They are 2,598,960 to 1. That means you will get a royal flush about once every 2,598,960 hands of five-card poker (known as five-card stud poker). Even if you play every day, and for numerous hours a day, you may never get one. However, if you have forever, and continue playing, eventually you will get one, then another, and with infinite time, an uncountable number (an infinite number). Using this example, if there are an infinite number of us in the universe, then each of us in some part of the universe will experience a possible scenario. Since there are an infinite number of us, as a group we will experience every conceivable scenario. For example, in one of these possible scenarios, you would be the President of the United States.

I recognize the implications of an infinite universe are difficult to comprehend. A natural question to ask is, is it possible? The fact is, it’s theoretically possible, but there is no conclusive physical evidence. Recently, it’s been suggested that irregularities observed in the cosmic microwave background may be evidence of another universe bumping into ours. However, there is no scientific consensus regarding that hypothesis, so I am going to leave that discussion for a future post. Currently, it is scientifically valid to assert we do not know if the universe is finite or infinite.

A vibrant cosmic explosion with bright orange and red hues surrounded by a dark purple and blue starry background.

Why Is There Almost No Antimatter In the Universe?

One of the great mysteries of our universe, and a weakness of the Big Bang theory, is that matter, not antimatter, totally makes up our universe. According to the Big Bang theory, there should be equal amounts of matter and antimatter. (Note: The Big Bang theory asserts that the universe originated from a highly dense energy state that expanded to form all that we observe as reality.)

If there were any significant quantities of antimatter in our galaxy, we would see radiation emitted as it interacted with matter. We do not observe this. It is natural to ask the question: where is the missing antimatter? (Recall, that antimatter is the mirror image of matter. For example, if we consider an electron matter, the positron is antimatter. The positron has the same mass and structure as an electron, but the opposite charge. The electron has a negative charge, and the positron has a positive charge. Antimatter bears no relationship to dark matter. (Dark matter is discussed in the next chapter.)

Several theories float within the scientific community to resolve the missing antimatter issue. The currently favored theories (baryogenesis theories) employ sub-disciplines of physics and statistics to describe possible mechanisms. The baryogenesis theories start out with the same premise, namely the early universe had both baryons (an elementary particle made up of three quarks) and antibaryons (the mirror image of the baryons). At this point, the universe underwent baryogenesis. Baryogenesis is a generic term for theoretical physical processes that produce an asymmetry (inequality) between matter and antimatter. The asymmetry, per the baryogenesis theories, resulted in significant amounts of residual matter, as opposed to antimatter. The major differences between the various baryogenesis theories are in the details of the interactions between elementary particles. Baryogenesis essentially boils down to the creation of more matter than antimatter. In other words, it requires the physical laws of the universe to become asymmetrical. We need to understand what this means.

The symmetry of physical laws is widely accepted by the scientific community. What does “symmetry” mean in this context?

  • First, it means that the physical laws do not change with time. If a physical law is valid today, it continues to be valid tomorrow, and any time in the future. This is a way of saying that a time translation of a physical law will not affect its validity.
  • Second, it means that the physical laws do not change with distance. If the physical law is valid on one side of the room, it is valid on the other side of the room. Therefore, any space translation of a physical law will not affect its validity.
  • Lastly, it means that the physical laws do not change with rotation. For example, the gravitational attraction between two masses does not change when the masses rotate in space, as long as the distance between them remains fixed. Therefore, any rotational translation of a physical law will not affect its validity.

This is what we mean by the symmetry of physical laws.

Next, we will address the asymmetry of physical laws. In this context, “asymmetry” means that the symmetry of physical laws no longer applies. For example, a law of physics may be valid in a specific location, but not in another, when both locations are equivalent. Is this possible? Maybe. There has been experimental evidence that the asymmetry is possible (a violation of the fundamental symmetry of physical laws). For example, radioactive decay and high-energy particle accelerators have provided evidence that asymmetry is possible. However, the evidence is far from conclusive. Most importantly, it does not fully explain the magnitude of the resulting matter of the universe.

This casts serious doubt on the baryogenesis theories. In addition, the baryogenesis theories appear biased by our knowledge of the outcome. By making certain (questionable) assumptions, and using various scientific disciplines, they result in the answer we already know to be true. The universe consists of matter, not antimatter. Therefore, baryogenesis theories may not be an objective explanation. However, apart from the Big Bang Duality theory, it is science’s best theory of the missing antimatter dilemma.

The Big Bang Duality theory, described in my book Unraveling the Universe’s Mysteries and also summarized below, provides a simpler explanation, which does not violate the fundamental symmetry of physical laws. From this viewpoint, it deserves consideration.

In essence, the Big Bang Duality theory hypothesizes that the Big Bang was the result of a collision of two infinitely dense matter-antimatter particles in the Bulk (i.e. A super-universe capable of holding countless universes. In theory, it contains our own universe, as well as other universes.).
 
This theory rests on the significant experimental evidence that when virtual particles emerge from “nothing,” they are typically created in matter-antimatter pairs. Based on this evidence, I argued in my book, Unraveling the Universe’s Mysteries, the Big Bang was a result of a duality, not a singularity as is often assumed in the Big Bang model. The duality would suggest two infinitely dense energy particles pop into existence in the Bulk. These are infinitely energy-dense “virtual particles.” One particle would be matter, the other antimatter. The collision between the two particles results in the Big Bang.
 
What does this imply? It implies that the Big Bang was the result of a matter-antimatter collision. What do we know about those types of collisions from our experiments in the laboratory? Generally, when matter and antimatter collide in the laboratory, we get “annihilation.” However, the laws of physics require the conservation of energy. Therefore, we end up with something, rather than nothing. The something can be photons, matter, or antimatter.
 
You may be tempted to consider the Big Bang Duality theory a slightly different flavor baryogenesis theory. However, the significant difference rests on the reactants, those substances undergoing the physical reaction, when the infinitely energy-dense matter-antimatter particles collide. The Big Bang Duality postulates the reactants are two particles (one infinitely energy-dense matter particle and one infinitely energy-dense antimatter particle). When the two particles collide, the laboratory evidence suggests the products that result are matter, photons, and antimatter. Contrary to popular belief, we do not get annihilation (nothing), when they collide. This would violate the conservation of energy. Consider this result. Two of the three outcomes, involving the collision of matter with antimatter, favor our current universe, namely photons and matter. This suggests that the collision of two infinitely dense matter-antimatter pairs statistically favor resulting in a universe filled with matter and photons. In other words, the universe we have. While not conclusive, it is consistent with the Big Bang being a duality. It is consistent with the reality of our current universe, and addresses the issue: where is the missing antimatter? The answer: The infinitely energy-dense matter-antimatter pair collides. The products of the collision favor matter and energy. Any resulting antimatter would immediately interact with the matter and energy. This reaction would continue until all that remains is matter and photons. In fact, a prediction of the Big Bang Duality theory would be the absence of observable antimatter in the universe. As you visualize this, consider that the infinitely energy-dense matter and antimatter particles are infinitesimally small, even to the point of potentially being dimensionless. Therefore, the collision of the two particles results in every quanta of energy in each particle contacting simultaneously.
 
You may be inclined to believe a similar process could occur from a Big Bang singularity that produces equal amounts of matter and antimatter. The problem with this theory is that the initial inflation of the energy (matter and antimatter) would quickly separate matter and antimatter. While collisions and annihilations would occur, we should still see regions of antimatter in the universe due to the initial inflation and subsequent separation. If there were such regions, we would see radiation resulting from the annihilations of antimatter with matter. We do not see any evidence of radiation in the universe that would suggest regions of antimatter. Therefore, the scientific community has high confidence that the universe consists of matter, and antimatter is absent.
 
I have sidestepped the conventional baryogenesis statistical analysis used to explain the absence of antimatter, which is held by most of the scientific community. However, the current statistical treatments require a violation of the fundamental symmetry of physical laws. Essentially, they argue the initial expansion of the infinitely dense energy point (singularity) produces more matter than antimatter, hence the asymmetry. This appears to complicate the interpretation, and violate Occam’s razor. The Big Bang Duality theory preserves the conservation of energy law, and does not require a violation of the fundamental symmetry of physical laws.
 
Let me propose a sanity check. How comfortable is your mind (judgment) in assuming a violation of the fundamental symmetry of physical laws? I suspect many of my readers and numerous scientists may feel uncomfortable about this assumption. The most successful theory in modern physics is Einstein’s special theory of relativity, which requires the laws of physics to be invariant in any inertial frame of reference (i.e., a frame of reference at rest or moving at a constant velocity). If you start with the Big Bang Duality theory, it removes this counterintuitive assumption. This results in a more straightforward, intellectually satisfying, approach, consistent with all known physical laws. Therefore, this theory also fits Occam’s razor (i.e., A principle of science that holds the simplest explanation is the most plausible one, until new data to the contrary becomes available.).
Close-up of translucent marbles with swirling colors against a vibrant red background.

Are There Other Universes?

With the advent of M-theory (i.e., membrane theory, the most comprehensive string theory), the concept of other universes (i.e., multiverse) has gained some traction in the scientific community. According to M-theory, when two membranes collide, they form a universe. The collision is what we observed as the Big Bang when our universe formed. From that standpoint, universes continually form via other Big Bangs (collisions of membranes). Is this believable? Actually, It is highly speculative. At this point, we must admit no conclusive evidence of a multiverse exists. In fact, numerous problems with the multiverse theories are known.

All multiverse theories share three significant problems.

  1. None of the multiverse theories explains the origin of the initial energy to form the universe. They, in effect, sidestep the question entirely. Mainstream science believes, via inference, in the reality of energy. Therefore, it is a valid question to ask: what is the origin of energy needed to form a multiverse? M-theory does not provide an answer.
  2. No conclusive experimental evidence proves that multiverses exist. This is not to say that they do not exist. Eventually, novel experiments may prove their existence. However, to date no experiment or observation has proved M-theory as correct or the existence of other universes.
  3. Critics argue it is poor science. We are postulating universes we cannot see or measure in order to explain the universe we can see and measure. This is another way of saying it violates Occam’s razor, which states states that the simplest explanation is the most plausible one.

Is it possible to use technologies associated with astronomy to detect other universes? The answer is maybe, and that is a big MAYBE! What does astronomy teach us? The the farthest-away entity we can see in space is the cosmic microwave background, which is thermal radiation assumed to be left over from the Big Bang. The cosmic microwave background actually blocks us from looking deeper into space. However, some highly recent discoveries regarding the cosmic microwave background have been made that suggest there may be other universes. Let’s look at those discoveries.

A growing number of scientists  cite evidence that our universe bumped into other universes in the distant past. What is the evidence? They cite unusual ring patterns on the cosmic microwave background. The cosmic microwave background is remarkably uniform, with the exception of the unusual ring patterns. Scientists attribute the ring patterns to bumps from other universes. Two articles discuss this finding.

  • First evidence of other universes that exist alongside our own after scientists spot “cosmic bruises,” by Niall Firth, December 17, 2010 (http://www.dailymail.co.uk).
  • Is Our Universe Inside a Bubble? First Observational Test of the “Multiverse.” ScienceDaily.com, August 3, 2011.

Obviously, this is controversial, and even the scientist involved caution the results are initial findings, not proof. It is still intriguing, and lends fuel to the concept of there being other universes. This would suggest time, in the cosmic sense, transcends the Big Bang. As impossible as it would seem to prove other universes, science has founds ways of proving similar scientific mysteries. The prominent physicist, Michio Kaku, said it best in Voices of Truth (Nina L. Diamond, 2000), “A hundred years ago, Auguste Compte, … a great philosopher, said that humans will never be able to visit the stars, that we will never know what stars are made out of, that that’s the one thing that science will never ever understand, because they’re so far away. And then, just a few years later, scientists took starlight, ran it through a prism, looked at the rainbow coming from the starlight, and said: ‘Hydrogen!’ Just a few years after this very rational, very reasonable, very scientific prediction was made, that we’ll never know what stars are made of.” This argues that what seems impossible to prove today might be a scientific fact tomorrow.

What does this all add up to? First, from both a mathematical perspective and observations from astronomy, we have evidence that suggests the theory of other universes (i.e., multiverse) may be correct. However, the evidence, though compelling to some, is not conclusive. I suggest keeping an open mind. What we don’t understand via today’s science may yield to tomorrows science.

Abstract fractal pattern resembling a cosmic or underwater scene with glowing blue and white textures.

Do We Need M-Theory? Maybe!

Most high school science classes teach the classical view of the atom, incorporating subatomic particles like protons, electrons, and neutrons. This is the particle theory of the atom dating to the early Twentieth Century. In about the 1960s, scientists discovered more subatomic particles. By the 1970s, scientists discovered that protons and neutrons consist of subatomic particles called quarks (an elementary particle not known to have a substructure). In the 1980s, a mathematical model called string theory, was developed. It is a branch of theoretical physics. String theory sought to explain how to construct all particles and energy in the universe via hypothetical one-dimensional “strings.” Subatomic particles are no longer extremely small masses. Instead, they are oscillating lines of energy, hence the name “strings.” In addition, the latest string theory (M-theory) asserts that the universe is eleven dimensions, not the four-spacetime dimensions we currently experience in our daily lives. String theory was one of science’s first attempts at a theory of everything (a complete mathematical model that describes all fundamental forces and matter).

In about the mid-1990s, scientists considered the equivalences of the various string theories, and the five leading string theories were combined into a one comprehensive theory, M-theory. M-theory postulates eleven dimensions of space filled with membranes, existing in the Bulk (super-universe). The Bulk contains an infinite number of membranes, or “branes” for short.

According to M-theory, when two branes collide, they form a universe. The collision is what we observed as the Big Bang when our universe formed. From that standpoint, universes continually form via other Big Bangs (collisions of branes).

Does this explain the true origin of the energy? No! It still begs the question: where does the energy come from to create the membranes? The even-bigger question: is there any scientific proof of the multiverse? Recently, several scientists claim unusual ring patterns on the cosmic microwave background might be the result of other universes colliding with ours. However, even the scientists forwarding this theory suggest caution. It is speculative. At this point, we must admit no conclusive evidence of a multiverse exists. In fact, numerous problems with the multiverse theories are known. This does not mean there are no multiverses. Currently, though, we have no conclusive experimental proof, but do have numerous unanswered questions.

All multiverse theories share three significant problems.

1) None of the multiverse theories explains the origin of the initial energy to form the universe. They, in effect, sidestep the question entirely.

2) No conclusive experimental evidence proves that multiverses exist. This is not to say that they do not exist. It just means we cannot prove they exist.

3) Critics argue it is poor science. We are postulating universes we cannot see or measure in order to explain the universe we can see and measure.

However, in the last hundred years, we have made discoveries, and experimentally verified phenomena that in prior centuries would have been considered science fiction, metaphysics, magic, and unbelievable. We discovered numerous secrets of the universe, once believed to be only the Milky Way galaxy—to now being an uncountable number of galaxies in a space that is expanding exponentially. We also unlocked the secrets of the atom, once believed to be the fundamental building block of matter (from the Greek atomos “uncut”). Currently, we understand the atom consists of electrons, protons, and neutrons, which themselves consist of subatomic particles like quarks. The list of discoveries that have transformed our understanding of reality over the last century is endless. From my perspective, skepticism can be healthy. However, one cannot be entirely closed-minded when it comes to exploring the boundaries of science.

This brings us to the crucial question: Do we need M-Theory? My answer is: Maybe! Right now, it’s the only “mainstream” game in town. It has numerous respected proponents, including world-renowned cosmologist/physicist Stephen Hawking. However, the “mainstream” has been wrong before, and we are in uncharted waters. It may be right, and the mathematics is elegant. The only thing missing is experimental evidence (i.e., proof). On this one, you’ll have to weigh the facts and draw your own conclusion.

Source: Unraveling the Universe’s Mysteries (2012), Louis A. Del Monte

Image: iStockPhoto (licensed)

 

 

M-theory

M-theory Explained

M-theory — Physicist Louis Del Monte discusses the discoveries leading to M-theory. Del Monte explains M-theory’s “membrane universes” (i.e. branes) and the 11-dimensions predicted by the theory. According to M-theory, a collision between branes gives birth to a new universe. In this context, according to M-theory, the Big Bang would be a result of a collision between branes.

Del Monte explains the two major criticisms M-theory’s opponents assert:

1. M-theory is not provable. Therefore, many in the scientific community do not consider it a valid theory of science.

2. M-theory does not explain the origin of the energy to create membrane universes, or to spawn new universes when branes collide.

In summary, opponents assert we are trying to explain a universe we can experience and measure with an M-theory universe that we cannot experience and measure.

Del Monte’s position: As a theory of the universe, especially in creating universes, M-theory is not provable with today’s technology. Until it is provable, we should view it as mathematical construct. It does not address the fundamental question: where did the energy originate to create the membranes? However, M-theory does offer some useful tools, via its prediction of an 11-dimension universe. This may provide clues in understanding other physical phenomena, such as virtual particles.

This subject is also fully discussed in Louis Del Monte’s new book, Unraveling the Universe’s Mysteries (available in paper back or as an eBook on Amazon http://amzn.to/Zo1TGn and Barnes & Noble http://bit.ly/RAv4FL).

For more information about Louis Del Monte, please follow Louis Del Monte on Twitter (https://twitter.com/delmontelouis), and view his Facebook page at https://www.facebook.com/DelMonte.Louis

Multiverse

The Multiverse Doesn’t Solve The Major Cosmological Problems – Part 3


In part three, Physicist Louis Del Monte discusses the multiverse theories and points out three major problems all multiverse theories have in common, namely:

1.The multiverse theories do not explain the origin of the energy to create multiverses
2.There is no conclusive proof of a multiverse
3.Critics argue it is bad science

For more information and Del Monte’s book, “Unraveling the Universe’s Mysteries,” check out http://louisdelmonte.com.

Multiverse

The Multiverse Doesn’t Solve The Major Cosmological Problems – Part 2


In part two, Physicist Louis Del Monte discusses the multiverse theories and points out three major problems all multiverse theories have in common, namely:

1.The multiverse theories do not explain the origin of the energy to create multiverses
2.There is no conclusive proof of a multiverse
3.Critics argue it is bad science

For more information and Del Monte’s book, “Unraveling the Universe’s Mysteries,” check out http://louisdelmonte.com.

Multiverse

The Multiverse Doesn’t Solve The Major Cosmological Problems – Part 1


In this three-part series, Physicist Louis Del Monte discusses the multiverse theories and points out three major problems all multiverse theories have in common, namely:

1.The multiverse theories do not explain the origin of the energy to create multiverses
2.There is no conclusive proof of a multiverse
3.Critics argue it is bad science

For more information and Del Monte’s book, “Unraveling the Universe’s Mysteries,” check out http://louisdelmonte.com.