Category Archives: Categories

Abstract digital artwork featuring swirling golden and orange lines against a dark purple and black background.

Is String Theory Pseudoscience?

Is string theory pseudoscience? To address this questions, let’s start by understanding what constitutes science and distinguishes it from pseudoscience.

Let’s start by defining science. Science is the intellectual and practical activity encompassing the systematic study of the structure and behavior of the physical and natural world through observation and experiment. The important words in this definition are “observation” and “experiment.” In other words, real science, and scientific theories, requires its hypotheses and associated predictions to be observable and/or be experimentally verified. One example of a solid scientific theory is Einstein’s special theory of relativity. It has withstood over one hundred years of observation and experimental scrutiny. In fact, it is generally held as the “gold standard” that all theories of science should be measured against.

With the above understanding, if I were to propose a new theory that by its inherent nature had at its core hypotheses that we are unable to experimentally verify and yielded predictions we would not be able to observe or measure, I believe many would consider such a theory to be pseudoscience. Pseudoscience is a system of theories, assumptions, and methods erroneously regarded as scientific, but are not verified, or verifiable, by experiment or  observation.

Now let’s examine string theory. String theory is built on the idea that elementary particles are not point-like objects, but are the vibration modes of one-dimensional “string-like” entities of energy. Proponents of string theory generally argue that it offers a theory of gravity and may provide a solution to the problem of reconciling Einstein’s general relativity with quantum mechanics. Therefore, if it were a valid theory, it would represent a leap in the physical sciences. However, there in lies the key question. Is it a valid theory?

Let start with its hypotheses. Can we measure or observe the one-dimensional vibrating strings of energy that form the core hypotheses of string theory? The answer is no, and that is an emphatic no. We cannot measure them with today’s science, and it is unlikely that we will ever be able to measure them. According string theorist the one-dimensional vibrating strings of energy are about equal to the Planck length, which is the smallest length science theorizes to exist. It is equal to 1.616199(97)×10^−35 meters and is defined from three fundamental physical constants, which I won’t to into here for the sake of brevity. The problem is that today’s science is unable to measure anything smaller than 10^-18 meters, which is billions of times larger than a Planck length. Many in the science community do not think we will ever be able to measure a Planck length, regardless of improvements in measurement technology. Therefore, the first significant problem with string theory is that its hypotheses are not verifiable.

Let’s next look at a significant predictions of string theory. In its current form, M-theory (i.e., membrane-theory, the most comprehensive form of string theory), it predicts there are 11 space-time dimensions, in serious disagreement with our senses and the most recent observations using particle accelerators. There is no experimental evidence of additional dimensions beyond the 4 space-time dimensions of Einstein’s general relativity.

There are arguably other issues with string theory, but the above two points, the lack of experimental verification of its hypotheses and its most fundamental prediction of 11 dimensions, serve to make an important point. It fails to pass the definition of science. String theory doesn’t  provide an intellectual and practical activity encompassing the systematic study of the structure and behavior of the physical and natural world through observation and experiment. It is not only unverified, but appears to be unverifiable at its core.

It’s natural to ask, why has string theory gained such a following in the scientific community. First, modern theoretical physics is based on two incompatible theories, Einstein’s theories of relativity and quantum mechanics. As I mentioned in a previous post, some progress has been made to reconcile them, but no progress has been made with regard to a unified theory of gravity. This has caused serious issues in the scientific community and it is only human to seek a theory that offers to resolve the issue. However, in this case, we are taking a theory that is flawed and unverifiable to attempt to reconcile relativity and quantum mechanics, both of which have been widely successful as theories within their specific context. Next, numerous formidable physicists, like Stephen Hawking and Brian Greene, have written best selling books based on string theory. To the average popular science reader, their books are exciting and their standing in the scientific community suggests their books are science fact. How is it possible that Dr. Hawking and Dr. Greene are in such strong support of a questionable theory. I think this has to do with the mathematical elegance of M-theory. It is relatively easy to become enamored with the mathematical formulations and loose sight of the fundamentals. Unfortunately, I think this has happened. Dr. Hawking has gone as far as saying we no longer need a God since we now have M-theory. Opponents rightly ask, where did M-theory come from? I am not going to get into the religious aspects. I only point this out to delineate how deeply some of today’s most respected physicists have embraced string theory.

Where do I stand? Obviously, today’s theoretical physics is based on two incompatible theories, Einstein’s relativity and quantum mechanics. Although, both theories work extremely well in the specific contexts, relativity at the macro level and quantum mechanics at the micro or quantum level (i.e., the level of atoms and subatomic particles), they do not come together to provide cogent theory of gravity. Even though string theory offers a speculative path to resolve the incompatibilities, at its core it appears to be pseudoscience. At best, it is a conjecture, which means it falls into the category of opinion.

I offer this sober warning to those that plan on making a career in science. Before you decide to become a string theorist and spend your career working to understand M-theory mathematics, be sure that you agree with the fundamental hypotheses and predictions of string theory. Don’t fall hopelessly in love with the elegant mathematics. Just because you can publish your theoretical string theory results in respectable scientific journals and participate in professional conferences doesn’t legitimize string theory. Much like a recovering alcoholic, science must admit there is a problem and not grasp at the current fad of string theory. It is better to admit we don’t have a solution than to forward what is likely the most legitimized pseudoscience of modern times, string theory.

A glowing sign with the word 'TRUTH' illuminated against a sunset backdrop.

Science Versus Truth

Many people, even some scientists, believe science equates with truth, especially with regard to the behavior of nature. Let’s examine whether this hypothesis is correct.

Modern physics is based on Einstein’s special and general theories of relativity and quantum mechanics. Each theory models and predicts the behavior of reality within specified contexts. The theories of relativity work well in explaining and predicting the behavior of reality at the macro level (i.e., typically the level of our everyday world), even as objects approach the speed of light. Quantum mechanics works well in explaining and predicting the behavior of reality at the micro level, often termed the quantum level (i.e., the level of atoms and subatomic particles). However, the two theories are incompatible. For example, the theories of relativity describe the behavior of reality at the macro level with certainty, but are unable to  explain reality on the quantum level. Quantum mechanics is able to describe the behavior of reality at the micro level in terms of probabilities, but again is unable to provide an adequate model of how gravity works at the quantum level.

Physicists have been working to reconcile relativity and quantum mechanics for over a century. To date, some progress has been made. For example, special relativity was merged with electromagnetism. This resulted in the theory of quantum electrodynamics (QED) or relativistic quantum field theory. QED is widely considered to be the most precise theory of natural phenomena ever developed. In the 1960s and 1970s, physicists attempted to unify the weak, the strong, and the gravitational forces. This resulted in another set of theories that merged the strong and weak forces called quantum chromodynamics (QCD) and quantum electroweak theory. However, no theory has successfully reconciled quantum mechanics and general relativity with regard to gravity. This incompatibility and the vastly different models of reality posed by the theories of relativity and quantum mechanics forces many in the scientific community to question their overall validity. In response, some physicists have forwarded a completely different model of reality based on string theory. In essence, string theory is a a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects of vibrating energy called strings. The most comprehensive string theory is termed M-theory, which stands for membrane theory. While many highly esteemed physicists, like Stephen Hawking, have championed M-theory, there is no experimental proof that it correctly models nature.

What does all this say about science and it relationship to truth? Science attempts to explain (i.e., model) and predict reality, but the best theories of modern physics are either inconsistent or not experimentally verified. In science, we have models, laws and mathematics that strive to explain and predict reality. However, our view of reality continues to evolve as our understanding of science evolves. For example, Newtonian mechanics works well for most problems in our everyday world, but fails to work when objects move close to the speed of light. Einstein’s theories of relativity evolved to solve relativistic problems (i.e., objects moving at speeds close to the speed of light). In principle, we can replace Newtonian mechanics with the theories of relativity, but reality has not changed. The only thing that has changed is our model of reality and the mathematical equations we use to predict nature’s behavior.

In conclusion, what can we say about science versus truth. If we define truth as the actual way nature behaves, then we must  admit that science does not equate with truth. Science is continually evolving to more closely model what nature is actually doing. The mathematics of science are continuously being refined to more closely predict how nature will behave. What is true in science? Scientific facts are true. For example, we can scientifically measure the gravitational attraction between two masses. However, scientific theories that explain this attraction may be wrong. For example, Newtonian mechanics explains gravity in terms of a gravitational field. General relativity, which superseded Newtonian mechanics, explains gravity as the distortion of space caused by a mass. Although the facts of science are indisputable, the theories used to explain them are not.

Abstract fractal pattern resembling a cosmic or underwater scene with glowing blue and white textures.

What We Don’t Know About Energy!

We scientists talk about energy and derive equations with energy mathematically expressed in the equation as though we understand energy. The fact is, we do not. It is an indirectly observed quantity. We infer its existence. For example, in physics, we define energy as the ability of a physical system to do work on another physical system. Physics is one context that uses and defines the word energy. However, the word energy has different meanings in different contexts. Even the average person throws the term energy around in phrases like, “I don’t have any energy today,” generally inferring a lack of vigor, force, potency, zeal, push, and the like. The word energy finds its way into both the scientific community and our everyday communications, but the true essence of energy remains an enigma.

To understand what we don’t know about energy, let’s start with what we do know. We know that energy may be transferred, stored, and transformed, but it cannot be created or destroyed in an isolated system. This means the total energy of an isolated system does not change. Now, let’s understand what we don’t know. It boils down to just two points:

  1. We do not know how to define energy independent of context. For example, we can define and measure electrical energy in the context of an electrical system, like a light bulb. However, if we change context to a mechanical system, we need to redefine what we mean by energy and how we measure it. For example, a body in motion has kinetic energy. In physics, we define kinetic energy and we are able to measure it.
  2. We do not know how to create or destroy energy. Arguably, the most sacred law in physics is the conservation of energy, which states energy cannot be created or destroyed in an isolated system.

The above two points are profound and lead to the most difficult philosophical questions in physics. For example, it is widely accepted that the universe evolved from the big bang. That is to say, the universe started as an infinitely dense energy point that expanded to what we now observe as reality, the sun, planets, stars, etc. However, the most profound question in cosmology is: Where did the energy that started the big bang come from? Although, some physicists have forwarded theories to address the question, no theory has gained wide acceptance by the scientific community. It remains a profound mystery.

Our understanding of energy remains incomplete. Even when we are able to define a context, like a vacuum, that we know contains energy, we still cannot define how to measure the total amount of energy within a vacuum. It may surprise some reader to learn that vacuums contain energy and gives rise to virtual particles, which are particles that exists for a limited time, obeys some of the laws of real particles, including the Heisenberg uncertainty principle and the conservation energy. However, the kinetic energy of virtual particles may be negative. So, while it is widely accepted that vacuums contain energy, we don’t have any known way to measure the total amount of energy they contain.

As mentioned above, we truly do not know the essence of energy; we infer its existence by its effects. The effects we measure often involve utilizing fundamental concepts of science, such as mass, distance, radiation, temperature, time, and electric charge. We have learned a great deal about energy in the last century. We can infer it exists. Its existence and definition is context sensitive. We do not have any instrument to measure energy directly, independent of the context. Yet, in the last century, we have learned to harness energy in various forms. We use electrical energy to power numerous everyday items, such as computers and televisions. We have learned to unleash the energy of the atom in nuclear reactors to power, for example, cities and submarines. We have come a long way, but the fundamental essence of energy remains an enigma.

Close-up of translucent marbles with swirling colors against a vibrant red background.

Are There Other Universes?

With the advent of M-theory (i.e., membrane theory, the most comprehensive string theory), the concept of other universes (i.e., multiverse) has gained some traction in the scientific community. According to M-theory, when two membranes collide, they form a universe. The collision is what we observed as the Big Bang when our universe formed. From that standpoint, universes continually form via other Big Bangs (collisions of membranes). Is this believable? Actually, It is highly speculative. At this point, we must admit no conclusive evidence of a multiverse exists. In fact, numerous problems with the multiverse theories are known.

All multiverse theories share three significant problems.

  1. None of the multiverse theories explains the origin of the initial energy to form the universe. They, in effect, sidestep the question entirely. Mainstream science believes, via inference, in the reality of energy. Therefore, it is a valid question to ask: what is the origin of energy needed to form a multiverse? M-theory does not provide an answer.
  2. No conclusive experimental evidence proves that multiverses exist. This is not to say that they do not exist. Eventually, novel experiments may prove their existence. However, to date no experiment or observation has proved M-theory as correct or the existence of other universes.
  3. Critics argue it is poor science. We are postulating universes we cannot see or measure in order to explain the universe we can see and measure. This is another way of saying it violates Occam’s razor, which states states that the simplest explanation is the most plausible one.

Is it possible to use technologies associated with astronomy to detect other universes? The answer is maybe, and that is a big MAYBE! What does astronomy teach us? The the farthest-away entity we can see in space is the cosmic microwave background, which is thermal radiation assumed to be left over from the Big Bang. The cosmic microwave background actually blocks us from looking deeper into space. However, some highly recent discoveries regarding the cosmic microwave background have been made that suggest there may be other universes. Let’s look at those discoveries.

A growing number of scientists  cite evidence that our universe bumped into other universes in the distant past. What is the evidence? They cite unusual ring patterns on the cosmic microwave background. The cosmic microwave background is remarkably uniform, with the exception of the unusual ring patterns. Scientists attribute the ring patterns to bumps from other universes. Two articles discuss this finding.

  • First evidence of other universes that exist alongside our own after scientists spot “cosmic bruises,” by Niall Firth, December 17, 2010 (https://www.dailymail.co.uk).
  • Is Our Universe Inside a Bubble? First Observational Test of the “Multiverse.” ScienceDaily.com, August 3, 2011.

Obviously, this is controversial, and even the scientist involved caution the results are initial findings, not proof. It is still intriguing, and lends fuel to the concept of there being other universes. This would suggest time, in the cosmic sense, transcends the Big Bang. As impossible as it would seem to prove other universes, science has founds ways of proving similar scientific mysteries. The prominent physicist, Michio Kaku, said it best in Voices of Truth (Nina L. Diamond, 2000), “A hundred years ago, Auguste Compte, … a great philosopher, said that humans will never be able to visit the stars, that we will never know what stars are made out of, that that’s the one thing that science will never ever understand, because they’re so far away. And then, just a few years later, scientists took starlight, ran it through a prism, looked at the rainbow coming from the starlight, and said: ‘Hydrogen!’ Just a few years after this very rational, very reasonable, very scientific prediction was made, that we’ll never know what stars are made of.” This argues that what seems impossible to prove today might be a scientific fact tomorrow.

What does this all add up to? First, from both a mathematical perspective and observations from astronomy, we have evidence that suggests the theory of other universes (i.e., multiverse) may be correct. However, the evidence, though compelling to some, is not conclusive. I suggest keeping an open mind. What we don’t understand via today’s science may yield to tomorrows science.

A stunning spiral galaxy with bright core and swirling arms filled with stars and cosmic dust in deep space.

The Nature of Reality

This article addresses a deceptively simple question, what is reality? Our first response is to simply say look around you. Everything you see is part of reality. What’s wrong with that as an answer? Actually nothing is wrong with that answer if you’re trying to explain reality to a young child. As the child grows older, you will likely explain that reality also consists of things you can’t see as well, like radio waves. When the child goes to school, at some point they will teach the child about gravity and likely describe it as an invisible field between two masses that draws them together. The typical classroom lesson talks about Newton being hit on the head with an apple and as a consequence discovering gravity. So, if we sum up the typical description of reality taught to us as school children it consists of entities we can see and entities we can’t see.

Today we know that reality, our universe, is fundamentally made of mass and  electromagnetic energy (i.e., photons and electrons). We also know that even vacuums contain energy, which has been proven by laundry list of experiments, such as the Casimir-Polder force (i.e., an attraction between a pair of electrically neutral metal plates in a vacuum). Since Einstein’s special theory of relativity equates energy with mass via his famous equation E = mc^2, where E is energy, m is mass, and c is the speed of light in empty space, we can argue that the entire universe is made of energy in different forms. This should not surprise us since the most accepted theory of the universe’s evolution is the big bang theory. The big bang theory holds that the universe originated from an infinitely dense-energy point that expanded to form the universe we now observe.

From quantum mechanics we learn that all energy is quantized (i.e., made up of discrete packets of energy termed quantums). For example, light is made up of photons, and mass is made of atoms, which in turn is made of discrete subatomic particles, like protons and electrons. Although the science of physics breaks down when we attempt to model the infinitely dense-energy point that constituted the big bang at the point it came into existence, it’s logical to believe the energy that constituted the big bang must have also been quantized. However, this point should be considered a hypothesis, since it has not been proven.

What does all of the above say about reality? The answer is two points:

  1. All reality is energy, which manifests itself in different forms
  2. All energy is quantized (This is a fundamental pillar of quantum mechanics)

In a recent previous post, The Nature of Time Parts 1 and 2, I delineated that science holds that time itself is also quantized into small intervals termed Planck time. I also presented a conjecture that movement in time was related to energy. Please see that post for a more complete understanding. If you are willing to accept that all reality (mass, space, time, and energy) is composed of discrete energy quantums, we can argue we live in a Quantum Universe (i.e., a universe that is made up of discrete quantum of energy, including for example photons, atoms, subatomic particles, etc.).

I would like to add that this view of the universe is similar to the assertions of string theory, which posits that all reality consists of a one-dimensional vibrating string of energy. I intentionally chose not to entangle the concept of a Quantum Universe with string theory. If you will pardon the metaphor, string theory is tangled in numerous interpretations and philosophical arguments. No scientific consensus says that string theory is valid, though numerous prominent physicists believe it is. For these reasons, I chose to build the concept of a Quantum Universe separate from string theory, although the two “theories” (actually hypotheses) appear conceptually compatible.

A Quantum Universe may be a difficult theory to accept. We do not typically experience the universe as being an immense system of discrete packets of energy. Light appears continuous to our senses. Our electric lamp does not appear to flicker each time an electron goes through the wire. The computer you are using to read these words appears solid. We cannot feel the atoms that form the computer. This makes it difficult to understand that the entire universe consists of quantized energy. Here is a simple framework to think about it. When we watch a motion picture, each frame in the film is slightly different from the last. When we play them at the right speed, about twenty-four frames per second, we see, and our brains process continuous movement. However, is it? No. It appears to be continuous because we cannot see the frame-to-frame changes.

In summary, this article argues the nature of reality, the universe, consists of energy and that energy is quantized, resulting in a Quantum Universe.