All posts by admin

A silhouette of a person with a clock face behind them, symbolizing the concept of time and human existence.

Theoretical Foundations for Time Travel (Why time travel is possible!)

This post is based on material from chapter 1 of my new book, How to Time Travel.

Einstein’s special and general theories of relativity underpin the science of time travel. They are briefly presented here as theoretical evidence that time travel is real. In addition, Del Monte’s existence equation conjecture is presented as theoretical evidence that time travel is real.

1. Einstein’s special theory of relativity—The scientific community considers the special theory of relativity the “gold standard” of scientific theories. It has withstood over one hundred years of experimental verification. In addition to yielding the most iconic scientific equation of all time, E = mc2, it also gave us our first insight into the scientific nature of time and predicted time dilation, both conceptually and mathematically. Time dilation is the experimentally verifiable difference of elapsed time between two events as measured by observers, when either one or both observers are moving relative to each other at a velocity near the speed of light. It is an experimental fact that the second hand on a clock moving at a velocity close to the speed of light moves slower than a clock at rest. Time dilation is real and implies forward time travel. For example, if you board a spacecraft capable of traveling at 650 million miles per hour, a one-day journey measured by a clock onboard the spacecraft would be equivalent to the passage of one year on Earth. Time dilation experiments are routinely performed using particle accelerators, which we will discuss later in this chapter.

2. Einstein’s general theory of relativity—Numerous aspects of the general theory of relativity have been verified. For our purposes regarding time travel, it is important to focus on only two:

* Gravitational time dilation—Gravitational time dilation suggests that two observers differently situated from gravitational masses will observe time differently. For example, a clock closer to the Earth will run slower than a clock farther from the Earth. The stronger the gravitational field, the greater the time dilation. This has been experimentally verified using atomic clocks, and we will discuss the results later in this chapter.

* Closed timelike curves—There are numerous solutions to Einstein’s equations of general relativity that delineate the world line of a particle is closed, returning to its starting point. In the general theory of relativity, the world line is the path the particle traverses in four-dimensional spacetime. For example, when the particle starts out, it has four coordinates, three dimensional coordinates and one temporal coordinate. Here is a simple analogy. You are in a specific place, definable by three spatial coordinates, reading this book at a specific time, a temporal coordinate. If the world line of a particle returns to its starting point, the particle is said to have returned to its past, suggesting backward time travel is theoretically possible. However, to date, we have not been able to experimentally verify that this aspect of Einstein’s general theory of relativity is true. As previously discussed, there is evidence that the “arrow of time” can be twisted, and that events in the future can influence past events. However, this is not conclusive experimental proof that backward time travel is possible.

3. Del Monte’s existence equation conjecture—In summary, the existence equation conjecture is derived from Einstein’s special theory of relativity and predicts that a mass requires energy to move in time. If additional positive energy is added to the mass, for example, by accelerating it in a particle accelerator and increasing its kinetic energy, the mass will move more slowly in time. I interpret this as the fundamental explanation of time dilation. An interesting aspect of the existence equation conjecture is that it suggests adding negative energy to a mass will cause the mass to move backward in time. Since today’s science has been unable to produce and manipulate negative energy, this last point has not been experimentally verified. (Note: An entire chapter is devoted to explaining the existence equation conjecture in the referenced source, How to Time Travel)

Source: From chapter 1 of How to Time Travel: Explore the Science, Paradoxes, and Evidence (September 2013), Louis A. Del Monte (Amazon)

Image: Book Cover How to Time Travel

Close-up of a large clock face with Roman numerals illuminated by warm golden light.

The Time Uncertainty Interval – The theoretical limit to measuring time

This post is based on material from my new book, How to Time Travel, available on Amazon.com.

All attempts in science to define time fail. Instead, we describe how time behaves during an interval, a change in time. We are unable to point to an entity and say “that is time.” The reason for this is that time is not a single entity, but scientifically an interval. We cannot slice time down to a shadow-like sliver, a dimensionless interval. In fact, scientifically speaking, the smallest interval of time that science can theoretically define, based on the fundamental invariant aspects of the universe, is Planck time.

Planck time is the smallest interval of time that science is able to define. The theoretical formulation of Planck time comes from dimensional analysis, which studies units of measurement, physical constants, and the relationship between units of measurement and physical constants. In simpler terms, one Planck interval is approximately equal to 10-44 seconds (i.e., 1 divided by 1 with 44 zeros after it). As far as the science community is concerned, there is a consensus that we would not be able to measure anything smaller than a Planck interval. In fact, the smallest interval science is able to measure as of this writing is trillions of times larger than a Planck interval. It is also widely believed that we would not be able to measure a change smaller than a Planck interval. From this standpoint, we can assert that time is only reducible to an interval, not a dimensionless sliver, and that interval is the Planck interval. Therefore, our scientific definition of time forces us to acknowledge that time is only definable as an interval, the Planck interval.

Since the smallest unit of time is only definable as the Planck interval, this suggests there is a fundamental limit to our ability to measure an event in absolute terms. This fundamental limit to measure an event in absolute terms is independent of the measurement technology. The error in measuring the start or end of any event will always be at least one Planck interval. This is analogous to the Heisenberg uncertainty principle, which states it is impossible to know the position and momentum of a particle, such as an electron, simultaneously. Based on fundamental theoretical considerations, the scientific community widely agrees that the Planck interval is the smallest measure of time possible. Therefore, any event that occurs cannot be measured to occur less than one Planck interval. This means the amount of uncertainty regarding the start or completion of an event is only knowable to one Planck interval. In our everyday life, our movements consist of a sequence of Planck intervals. We do not perceive this because the intervals are so small that the movement appears continuous, much like watching a movie where the projector is projecting each frame at the rate of approximately sixteen frames per second. Although each frame is actually a still picture of one element of a moving scene, the projection of each frame at the rate of sixteen frames per second gives the appearance of continuous motion. I term this inability to measure an event in absolute terms “the time uncertainty interval.”

Please feel free to browse How to Time Travel.

A silhouette of a person with a blank face in front of a large clock, set against a swirling cosmic background.

How to Time Travel: Explore the Science, Paradoxes, and Evidence

Here is the entire introduction from my new book, How to Time Travel. Enjoy!

Introduction

Few subjects evoke more emotion than time travel, the concept of moving between different points in time in a manner analogous to moving between different points in space. Humankind’s fascination with time travel dates back thousands of years. Although there is no consensus recognizing which written work was the first to discuss time travel, many scholars argue that the Mahabharata, from Hindu mythology, is the first, dating between 700 BCE (Before the Common/Current/Christian Era) and 300 CE (Common/Current/Christian Era). The Mahabharata, which is one of the two major Sanskrit epics of ancient India, relates the story of King Revaita, who travels to heaven to meet the deity Brahma. When King Revaita returns to Earth, he is shocked to learn that many ages have passed. In today’s science, we would assert King Revaita experienced time dilation.

What is time dilation? It is a scientific fact that time moves slower for any mass accelerated near the speed of light. If that mass were a clock, for example, the hands of the clock would appear to be moving slower than a clock in the hand of an observer at rest. That phenomenon is termed time dilation. If King Revaita used a spaceship capable of speeds near the speed of light to visit Brahma, a roundtrip journey that would appear to King Revaita to take one year would result in a time passage of thirty years on Earth. This may seem like science fiction, but time dilation is a well-established, experimentally verified aspect of Einstein’s special theory of relativity; more about this later.

Arguably, the greatest single written work that laid the foundation to fire the imagination of today’s generation regarding time travel is H. G. Wells’s classic novel, The Time Machine, published in 1895. It has inspired numerous popular movies, television programs, novels, and short stories. Why are we humans so obsessed with time travel? It appears to be an innate longing. How many times have you wished that you could go back to a specific point in time and select a different action? We all do it. Consider the number of times you have replayed a specific situation in your mind. Psychologists tell us we replay an event in our minds when the outcome is not finished to our satisfaction. This has accounted for numerous nights of tossing and turning. Another common need is to seek answers to important questions from a firsthand perspective. Perhaps you would like to be a witness during the resurrection of Christ, or be a witness behind the grassy knoll during the Kennedy assassination. Perhaps you miss a loved one who has passed on, and you would like to go back in time to embrace that loved one again.

Some of us also dream about time travel to the future. What outcomes will result from our decisions? Imagine the prosperity and happiness that could be ours if we were able to travel to the future. We would be able to witness the outcome of any decision, return to the present, and guide our lives accordingly. Picking the right profession or choosing the right mate would be a certainty. We could ensure there would be no missteps in our life. A life of leisure and prosperity would be ours for the taking.

It is little wonder that many people ask this deceptively simple question: Is time travel possible? The majority of the scientific community, including myself, says a resounding yes. The theoretical foundation for time travel, based on the solutions to Einstein’s equations of relativity, is widely accepted by the scientific community. The next question, which is the most popular question, is how to time travel. Of all the questions in science, the keyword phrase “how to time travel” is close to the top of Internet search engine searches. According to Google, the largest search engine in the world, there are 2,240,000 worldwide monthly searches for the keyword phrase “how to time travel,” as of this writing. Unfortunately, it is the most difficult question to answer.

Obviously, interest in time travel is high, and what people want to know most is how to time travel. This high interest, combined with the intriguing real science behind time travel, is what inspired me to write this book.

At this point, I would like to set your expectations. We are going to embark on a marvelous journey. We will examine the real science of time travel, the theoretical foundation that has most of the scientific community united that time travel is possible. We will also examine the obstacles to time travel, and there are many. However, even in the face of all the obstacles, most of the scientific community agrees it is theoretically possible to time travel. The largest issue in time travel is not the theoretical science. It is the engineering. Highly trained theoretical physicists understand the theoretical science of time travel. However, taking the theory and building a time machine capable of human time travel has proved a formidable engineering task. It has not been done, but we are amazingly close. We have already built time machines capable of sending subatomic particles into the future. If you will pardon the pun, it is just a matter of time before we engineer our way through the time travel barrier and enable human time travel.

In setting your expectations, I promise you significant insight into the real science of time travel and an equally incredible insight into the obstacles to time travel. I cannot promise that with this knowledge you will be able to overcome the obstacles and engineer how to time travel. However, you may be the one person destined to harness the science, glean the engineering simplicity, and journey in time. There is only one way to find out, namely, read on.

To browse the book free on Amazon, click this link: https://amzn.to/1dWyEkp

Close-up image of translucent blue cells or microscopic organisms against a dark background.

Virtual Particles – Spontaneous Particle Creation

This article is from chapter 1 of my book, Unraveling the Universe’s Mysteries. Enjoy!

Spontaneous particle creation is the phenomenon of particles appearing from apparently nothing (i.e., a vacuum), hence their name “virtual particles.” However, they appear real, and cause real changes to their environment. What is a virtual particle? It is a particle that only exists for a limited time. The virtual particle obeys some of the laws of real particles, but it violates other laws. What laws do virtual particles obey? They obey two of the most critical laws of physics, the Heisenberg uncertainty principle (it is not possible to know both the position and velocity of a particle simultaneously), and the conservation energy (energy cannot be created or destroyed). What laws do they violate? Their kinetic energy, which is the energy related to their motion, may be negative. A real particle’s kinetic energy is always positive. Do virtual particles come from nothing? Apparently, but to a physicist, empty space is not nothing. Said more positively, physicists consider empty space something.

Before we proceed, it is essential to understand a little more about the physical laws mentioned in the above paragraph.

First, we will discuss the Heisenberg uncertainty principle. Most physics professors teach it in the context of attempting to simultaneously measure a particle’s velocity and position. It goes something like this:

  • When we attempt to measure a particle’s velocity, the measurement interferes with the particle’s position.
  • If we attempt to measure the particle’s position, the measurement interferes with the particles velocity.
  • Thus, we can be certain of either the particle’s velocity or the particle’s position, but not both simultaneously.

This makes sense to most people. However, it is an over simplification. The Heisenberg uncertainty principle has greater implications. It embodies the statistical nature of quantum mechanics. Quantum mechanics is a set of laws and principles that describes the behavior and energy of atoms and subatomic particles. This is often termed the “micro level” or “quantum level.” Therefore, you can conclude that the Heisenberg uncertainty principle embodies the statistical behavior of matter and energy at the quantum level. In our everyday world, which science terms the macro level, it is possible to know both the velocity and position of larger objects. We generally do not talk in terms of probabilities. For example, we can predict the exact location and orbital velocity of a planet. Unfortunately, we are not able to make similar predictions about an electron as it obits the nucleus of an atom. We can only talk in probabilities regarding the electron’s position and energy. Thus, most scientists will say that macro-level phenomena are deterministic, which means that a unique solution describes their state of being, including position, velocity, size, and other physical attributes. On the other hand, most physics will argue that micro level (quantum level) phenomena are probabilistic, which means that their state of being is described via probabilities, and we cannot simultaneously determine, for example, the position and velocity of a subatomic particle.

The second fundamental law to understand is the conservation of energy law that states we cannot create or destroy energy. However, we can transform energy. For example, when we light a match, the mass and chemicals in the match transform into heat. The total energy of the match still exists, but it now exists as heat.

Lastly, the kinetic energy of an object is a measure of its energy due to its motion. For example, when a baseball traveling at high velocity hits a thin glass window, it is likely to break the glass. This is due to the kinetic energy of the baseball. When the window starts to absorb the ball’s kinetic energy, the glass breaks. Obviously, the thin glass is unable to absorb all of the ball’s kinetic energy, and the ball continues its flight after breaking the glass. However, the ball will be going slower, since it has used some of its kinetic energy to break the glass.

With the above understandings, we can again address the question: where do these virtual particles come from? The answer we discussed above makes no sense. It is counter intuitive. However, to the best of science’s knowledge, virtual particles come from empty space. How can this be true?

According to Paul Dirac, a British physicist and Nobel Prize Laureate, who first postulated virtual particles, empty space (a vacuum) consists of a sea of virtual electron-positron pairs, known as the Dirac sea. This is not a historical footnote. Modern-day physicists, familiar with the Dirac-sea theory of virtual particles, claim there is no such thing as empty space. They argue it contains virtual particles.

This raises yet another question. What is a positron? A positron is the mirror image of an electron. It has the same mass as an electron, but the opposite charge. The electron is negatively charged, and the positron is positively charged. If we consider the electron matter, the positron is antimatter. For his theoretical work in this area, science recognizes Paul Dirac for discovering the “antiparticle.” Positrons and antiparticles are all considered antimatter.

Virtual particle-antiparticle pairs pop into existence in empty space for brief periods, in agreement with the Heisenberg uncertainty principle, which gives rise to quantum fluctuations. This may appear highly confusing. A few paragraphs back we said that the Heisenberg uncertainty principle embodies the statistical nature of energy at the quantum level, which implies that energy at the quantum level can vary. Another way to say this is to state the Heisenberg uncertainty principle gives rise to quantum fluctuations.

What is a quantum fluctuation? It is a theory in quantum mechanics that argues there are certain conditions where a point in space can experience a temporary change in energy. Again, this is in accordance with the statistical nature of energy implied by the Heisenberg uncertainty principle. This temporary change in energy gives rise to virtual particles. This may appear to violate the conservation of energy law, arguably the most revered law in physics. It appears that we are getting something from nothing. However, if the virtual particles appear as a matter-antimatter pair, the system remains energy neutral. Therefore, the net increase in the energy of the system is zero, which would argue that the conservation of energy law remains in force.

No consensus exists that virtual particles always appear as a matter-antimatter pair. However, this view is commonly held in quantum mechanics, and this creation state of virtual particles maintains the conservation of energy. Therefore, it is consistent with Occam’s razor, which states that the simplest explanation is the most plausible one, until new data to the contrary becomes available. The lack of consensus about the exact nature of virtual particles arises because we cannot measure them directly. We detect their effects, and infer their existence. For example, they produce the Lamb shift, which is a small difference in energy between two energy levels of the hydrogen atom in a vacuum. They produce the Casimir-Polder force, which is an attraction between a pair of electrically neutral metal plates in a vacuum. These are two well-known effects caused by virtual particles. A laundry list of effects demonstrates that virtual particles are real.

Abstract fractal pattern resembling a cosmic or underwater scene with glowing blue and white textures.

Is Dark Energy Real or Simply a Scary Ghost Story?

If it is not real, it is an extremely scary ghost story. Unfortunately, the phenomena we call dark energy is real. If it plays out on its current course, we are going to be alone, all alone. The billions upon billions of other galaxies holding the promise of planets with life like ours will be gone. The universe will be much like what they taught our grandparents at the beginning of the Twentieth Century. It will consist of the Milky Way galaxy. All the other galaxies will have moved beyond our cosmological horizon, and be lost to us forever. There will be no evidence that the Big Bang ever occurred.

Mainstream science widely accepts the Big Bang as giving birth to our universe. Scientists knew from Hubble’s discovery in 1929 that the universe was expanding. However, prior to 1998, scientific wisdom was that the expansion of the universe would gradually slow down, due to the force of gravity, and eventually all mass in the universe would collapse to a single point in a “big crunch.” We were so sure that the “big crunch” model was correct, we decided to confirm our theory by measuring it. Can you imagine our reaction when our first measurement did not confirm our paradigm, namely that the expansion of the universe should be slowing down?

What happened in 1998? The High-z Supernova Search Team (an international cosmology collaboration) published a paper that shocked the scientific community. The paper was: Adam G. Riess et al. (Supernova Search Team) (1998). “Observational evidence from supernovae for an accelerating universe and a cosmological constant.” Astronomical J. 116 (3). They reported that the universe was doing the unthinkable. The expansion of the universe was not slowing down—in fact, it was accelerating. Of course, this caused a significant ripple in the scientific community. Scientists went back to Einstein’s general theory of relativity and resurrected the “cosmological constant,” which Einstein had arbitrarily added to his equations to prove the universe was eternal and not expanding. Einstein considered the cosmological constant his “greatest blunder” when Edwin Hubble, in 1929, proved the universe was expanding.

Through high school-level mathematical manipulation, scientists moved Einstein’s cosmological constant from one side of the equation to the other. With this change, the cosmological constant no longer acted to keep expansion in balance to result in a static universe. In this new formulation, Einstein’s “greatest blunder,” the cosmological constant, mathematically models the acceleration of the universe. Mathematically this may work, however, it does not give us insight into what is causing the expansion.

The one thing that you need to know is that almost all scientists hold the paradigm of “cause and effect.” If it happens, something is causing it to happen. Things do not simply happen. They have a cause. That means every bubble in the ocean has a cause. It would be a fool’s errand to attempt to find the cause for each bubble. Yet, I believe, as do almost all of my colleagues, each bubble has a cause. Therefore, it is perfectly reasonable to believe something is countering the force of gravity, and causing the expansion to accelerate. What is it? No one knows. Science calls it “dark energy.”

That is the state of science today. The universe’s expansion is accelerating. No one knows why. Scientists reason there must be a cause countering the pull of gravity. They name that cause “dark energy.” Scientists mathematically manipulate Einstein’s self-admitted “greatest blunder,” the “cosmological constant,” to model the accelerated expansion of the universe.

Here is the scary part. In time, we will be entirely alone in the galaxy. The accelerated expansion of space will cause all other galaxies to move beyond our cosmological horizon. When this happens, our universe will consist of the Milky Way. The Milky Way galaxy will continue to exist, but as far out as our best telescopes will be able to observe, no other galaxies will be visible to us. What they taught our grandparents will have come true. The universe will be the Milky Way and nothing else. All evidence of the Big Bang will be gone. All evidence of dark energy will be gone. Space will grow colder, almost devoid of all heat, as the rest of the universe moves beyond our cosmological horizon. The entire Milky Way galaxy will grow cold as the stars eventually run out of fuel and die. All life will end. How is that for a scary story?

This post is based on my book, Unraveling the Universe’s Mysteries (2012).