When an intelligent machine fully emulates the human brain in every regard (i.e., it possesses strong AI), should we consider it a new life-form?

The concept of artificial life (“A-life” for short) dates back to ancient myths and stories. Arguably the best known of these is Mary Shelley’s novel Frankenstein. In 1986 American computer scientist Christopher Langton, however, formally established the scientific discipline that studies A-life. The discipline of A-life recognizes three categories of artificial life (i.e., machines that imitate traditional biology by trying to re-create some aspects of biological phenomena).

  • Soft: from software-based simulation
  • Hard: from hardware-based simulations
  • Wet: from biochemistry simulations

For our purposes, I will focus only on the first two, since they apply to artificial intelligence as we commonly discuss it today. The category of “wet,” however, someday also may apply to artificial intelligence—if, for example, science is able to grow biological neural networks in the laboratory. In fact there is an entire scientific field known as synthetic biology, which combines biology and engineering to design and construct biological devices and systems for useful purposes. Synthetic biology currently is not being incorporated into AI simulations and is not likely to play a significant role in AI emulating a human brain. As synthetic biology and AI mature, however, they may eventually form a symbiotic relationship.

No current definition of life considers any A-life simulations to be alive in the traditional sense (i.e., constituting a part of the evolutionary process of any ecosystem). That view of life, however, is beginning to change as artificial intelligence comes closer to emulating a human brain. For example Hungarian-born American mathematician John von Neumann (1903–1957) asserted that “life is a process which can be abstracted away from any particular medium.” In particular this suggests that strong AI (artificial intelligence that completely emulates a human brain) could be considered a life-form, namely A-life.

This is not a new assertion. In the early 1990s, ecologist Thomas S. Ray asserted that his Tierra project (a computer simulation of artificial life) did not simulate life in a computer but synthesized it. This begs the following question: How do we define A-life?

The earliest description of A-life that comes close to a definition emerged from an official conference announcement in 1987 by Christopher Langton that was published subsequently in the 1989 book Artificial Life: The Proceedings of an Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems.

Artificial life is the study of artificial systems that exhibit behavior characteristic of natural living systems. It is the quest to explain life in any of its possible manifestations, without restriction to the particular examples that have evolved on earth. This includes biological and chemical experiments, computer simulations, and purely theoretical endeavors. Processes occurring on molecular, social, and evolutionary scales are subject to investigation. The ultimate goal is to extract the logical form of living systems.

Kurzweil predicts that intelligent machines will have equal legal status with humans by 2099. As stated previously, his batting average regarding these types of predictions is about 94 percent. Therefore it is reasonable to believe that intelligent machines that emulate and exceed human intelligence eventually will be considered a life-form. In this and later chapters, however, I discuss the potential threats this poses to humankind. For example what will this mean in regard to the relationship between humans and intelligent machines? This question relates to the broader issue of the ethics of technology, which is typically divided into two categories.

  1. Roboethics: This category focuses on the moral behavior of humans as they design, construct, use, and treat artificially intelligent beings.
  2. Machine ethics: This category focuses on the moral behavior of artificial moral agents (AMAs).

We will discuss the above categories in the up coming posts, as we continue to address the question: “Is Strong AI a New Life-Form?”

Source: The Artificial Intelligence Revolution (2014), Louis A. Del Monte